Age-related increases in the repeatable expression of labile phenotypic traits are often assumed to arise from an increase in among-individual variance due to differences in developmental plasticity or by means of state-behavior feedbacks. However, age-related increases in repeatability could also arise from a decrease in within-individual variance as a result of stabilizing trait expression, i.e. canalization. Here we describe age-related changes in withinand among-individual variance components in two correlated traits, gizzard mass and exploration behavior, in a medium-sized shorebird, the red knot (Calidris canutus). Increased repeatability of gizzard mass came about due to an increase in among-individual variance, unrelated to differences in developmental plasticity, together with decreases in withinindividual variance, consistent with canalization. We also found canalization of exploration, but no age-related increase in overall repeatability, which suggests that showing predictable expression of exploration behavior may be advantageous from a very young age onward.Contrasts between juveniles and adults in the first year after their capture provide support for the idea that environmental conditions play a key role in generating among-individual variation in both gizzard mass and exploration behavior. Our study shows that stabilization of traits occurs under constant conditions: with increased exposure to predictable cues, individuals may become more certain in their assessment of the environment allowing traits to become canalized.
The ecological reasons for variation in avian migration, with some populations migrating across thousands of kilometres between breeding and non‐breeding areas with one or few refuelling stops, in contrast to others that stop more often, remain to be pinned down. Red Knots Calidris canutus are a textbook example of a shorebird species that makes long migrations with only a few stops. Recognizing that such behaviours are not necessarily species‐specific but determined by ecological context, we here provide a description of the migrations of a relatively recently described subspecies (piersmai). Based on data from tagging of Red Knots on the terminal non‐breeding grounds in northwest Australia with 4.5‐ and 2.5‐g solar‐powered Platform Terminal Transmitters (PTTs) and 1.0‐g geolocators, we obtained information on 19 route‐records of 17 individuals, resulting in seven complete return migrations. We confirm published evidence that Red Knots of the piersmai subspecies migrate from NW Australia and breed on the New Siberian Islands in the Russian Arctic and that they stage along the coasts of southeastern Asia, especially in the northern Yellow Sea in China. Red Knots arrived on the tundra breeding grounds from 8 June onwards. Southward departures mainly occurred in the last week of July and the first week of August. We documented six non‐stop flights of over c. 5000 km (with a maximum of 6500 km, lasting 6.6 days). Nevertheless, rather than staging at a single location for multiple weeks halfway during migration, piersmai‐knots made several stops of up to a week. This was especially evident during northward migration, when birds often stopped along the way in southeast Asia and ‘hugged’ the coast of China, thus flying an additional 1000–1500 km compared with the shortest possible (great circle route) flights between NW Australia and the Yellow Sea. The birds staged longest in areas in northern China, along the shores of Bohai Bay and upper Liaodong Bay, where the bivalve Potamocorbula laevis, known as a particularly suitable food for Red Knots, was present. The use of multiple food‐rich stopping sites during northward migration by piersmai is atypical among subspecies of Red Knots. Although piersmai apparently has the benefit of multiple suitable stopping areas along the flyway, it is a subspecies in decline and their mortality away from the NW Australian non‐breeding grounds has been elevated.
Migratory birds undergo impressive body remodelling over the course of an annual cycle. Prior to long-distance flights, red knots (Calidris canutus islandica) reduce gizzard mass while increasing body mass and pectoral muscle mass. Although body mass and pectoral muscle mass are functionally linked via their joint effects on flight performance, gizzard and pectoral muscle mass are thought to be independently regulated. Current hypotheses for observed negative within-individual covariation between gizzard and pectoral muscle mass in free-living knots are based on a common factor (e.g. migration) simultaneously affecting both traits, and/or protein limitation forcing allocation decisions. We used diet manipulations to generate within-individual variation in gizzard mass and test for independence between gizzard and pectoral muscle mass within individuals outside the period of migration and under conditions of high protein availability. Contrary to our prediction, we observed a negative within-individual covariation between gizzard and pectoral muscle mass. We discuss this result as a potential outcome of an evolved mechanism underlying body remodelling associated with migration. Although our proposed mechanism requires empirical testing, this study echoes earlier calls for greater integration of studies of function and mechanism, and in particular, the need for more explicit consideration of the evolution of mechanisms underlying phenotypic design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.