Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in mice and the equivalent nephrocyte cell in Drosophila. Developmental deletion of both GSK3 isoforms (α and β) in murine podocytes causes late neonatal death associated with massive albuminuria and renal failure. Similarly, silencing GSK3 in nephrocytes is developmentally lethal for this cell. Mature genetic or pharmacological podocyte/nephrocyte GSK3 inhibition is also detrimental; producing albuminuric kidney disease in mice and nephrocyte depletion in Drosophila. Mechanistically, GSK3 loss causes differentiated podocytes to re-enter the cell cycle and undergo mitotic catastrophe, modulated via the Hippo pathway but independent of Wnt-β-catenin. This work clearly identifies GSK3 as a critical regulator of podocyte and hence kidney function.
We studied the non-obese diabetic (NOD) mice model because it develops autoimmune diabetes that resembles human type 1 diabetes. In diabetic mice, urinary albumin excretion (UAE) was ten-fold increased at an “early stage” of diabetes, and twenty-fold increased at a “later stage” (21 and 40 days, respectively after diabetes diagnosis) as compared to non-obese resistant controls. In NOD Diabetic mice, glomerular enlargement, increased glomerular filtration rate (GFR) and increased blood pressure were observed in the early stage. In the late stage, NOD Diabetic mice developed mesangial expansion and reduced podocyte number. Circulating and urine ACE2 activity were markedly increased both, early and late in Diabetic mice. Insulin administration prevented albuminuria, markedly reduced GFR, blood pressure, and glomerular enlargement in the early stage; and prevented mesangial expansion and the reduced podocyte number in the late stage of diabetes. The increase in serum and urine ACE2 activity was normalized by insulin administration at the early and late stages of diabetes in Diabetic mice. We conclude that the Diabetic mice develops features of early kidney disease, including albuminuria and a marked increase in GFR. ACE2 activity is increased starting at an early stage in both serum and urine. Moreover, these alterations can be completely prevented by the chronic administration of insulin.
Background/Aims: Angiotensin-converting enzyme 2 (ACE2) is the only known active homologue of ACE, and degrades angiotensin (Ang) II and Ang I to Ang(1–7) and Ang(1–9), respectively. The role of ACE2 in kidney transplant (KT) is unknown. Our objective was to investigate circulating ACE2 activity in KT patients, and the relationship between serum ACE2 activity and age, gender, graft function and cardiovascular risk markers in KT patients. Methods: 113 KT patients with stable graft function were included in this cross-sectional study. Circulating ACE2 activity was assessed using a fluorescent assay. Results: Circulating ACE2 activity was detectable in KT patients and was increased in KT with ischemic heart disease as compared to KT without ischemic heart disease (105.9 ± 8.7 vs. 97.1 ± 7.05 relative fluorescence units (RFU)/µl/h, p < 0.05). ACE2 activity was increased in male KT as compared to females (105.2 ± 9.1 vs. 84.7 ± 6.9 RFU/µl/h, p = 0.05). ACE2 activity correlated positively with serum creatinine (r = 0.27), serum urea (r = 0.29), age (r = 0.24), aspartate transaminase (r = 0.39), alanine transaminase (r = 0.48), γ-glutamyl transferase (γ-GT) (r = 0.52), age (r = 0.24), and glycosylated hemoglobin (r = 0.19) (p < 0.05). By multiple regression analysis, age, serum creatinine, and serum γ-GT were independent predictors of serum ACE2 activity (r = 0.66, p < 0.001). Conclusions: Circulating ACE2 activity is measurable in KT patients and directly correlates with age, renal allograft and liver function parameters. These findings suggest that measurement of serum ACE2 may be used as a non-invasive marker to understand the role of the renin-angiotensin system in KT patients.
Diabetic kidney disease is the leading cause of end-stage renal disease. Podocytes are differentiated cells necessary for the development and maintenance of the glomerular basement membrane and the capillary tufts, as well as the function of the glomerular filtration barrier. The epithelial glomerular cells express a local renin-angiotensin system (RAS) that varies in different pathological situations such as hyperglycemia or mechanical stress. RAS components have been shown to be altered in diabetic podocytopathy, and their modulation may modify diabetic nephropathy progression. Podocytes are a direct target for angiotensin II-mediated injury by altered expression and distribution of podocyte proteins. Furthermore, angiotensin II promotes podocyte injury indirectly by inducing cellular hypertrophy, increased apoptosis, and changes in the anionic charge of the glomerular basement membrane, among other effects. RAS blockade has been shown to decrease the level of proteinuria and delay the progression of chronic kidney disease. This review summarizes the local intraglomerular RAS and its imbalance in diabetic podocytopathy. A better understanding of the intrapodocyte RAS might provide a new approach for diabetic kidney disease treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.