The aim of this study was to assess the feasibility of the Ussing chamber technique for the determination of the jejunal permeability of passively absorbed, high permeability model compounds (acetaminophen and ketoprofen) in different animal species. Additionally, electrophysiological measurements and histological examination of pre- and post-incubation tissue specimens were performed. Apparent permeability coefficients of turkey and dog jejunum were low and highly variable due to tissue fragility caused by differences in thickness of the remaining intestinal layers after stripping and resulting in severe damage. Pig and horse jejunum were markedly more suitable for permeability determinations and mild signs of deterioration were noticed after 120 min of incubation. Transepithelial electrical resistance and potential difference did not correlate well with the observed tissue damage. From these data, the Ussing chamber technique appears to allow for permeability measurements within a species, but seems unsuitable for interspecies permeability comparison. However, further validation of the method with low permeability compounds and actively transported compounds is needed.
The pharmacodynamic properties of tepoxalin, Na-salicylate and ketoprofen were determined in an intravenous lipopolysaccharide (LPS) inflammation model in broiler chickens. The drugs were administered orally at a dose of 30, 50 and 3 mg/kg, respectively. LPS administration induces an increase in the intracellular expression of interleukin (IL)-1β and IL-6 and the secreted IL-6 plasma concentration. Furthermore, an elevation in body temperature is noted. Despite pretreatment with a single dose of the drugs and LPS administration on the T(max) of the drug after a second dose, no decrease was seen in systemic IL-6 levels. The intracellular expression of IL-1β in the heterophils was slightly decreased if LPS was administered in combination with each of the three drugs. Tepoxalin and Na-salicylate administration had no significant effect on the LPS-induced increase in prostaglandin E(2) plasma concentration, in contrast to ketoprofen. None of the three drugs were able to influence the elevation in body temperature after LPS administration. The pharmacokinetic properties of Na-salicylate and ketoprofen were not altered in combination with LPS administration. However, LPS significantly decreased the AUC(0→6 h) of the active metabolite of tepoxalin, RWJ-20142, indicating a perfusion-limited elimination for this molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.