Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.
Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM). In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.
Fruiting body lectins are ubiquitous in higher fungi and characterized by being synthesized in the cytoplasm and up-regulated during sexual development. The function of these lectins is unclear. A lack of phenotype in sexual development upon inactivation of the respective genes argues against a function in this process. We tested a series of characterized fruiting body lectins from different fungi for toxicity towards the nematode Caenorhabditis elegans, the mosquito Aedes aegypti and the amoeba Acanthamoeba castellanii. Most of the fungal lectins were found to be toxic towards at least one of the three target organisms. By altering either the fungal lectin or the glycans of the target organisms, or by including soluble carbohydrate ligands as competitors, we demonstrate that the observed toxicity is dependent on the interaction between the fungal lectins and specific glycans in the target organisms. The toxicity was found to be dose-dependent such that low levels of lectin were no longer toxic but still led to food avoidance by C. elegans. Finally, we show, in an ecologically more relevant scenario, that challenging the vegetative mycelium of Coprinopsis cinerea with the fungal-feeding nematode Aphelenchus avenae induces the expression of the nematotoxic fruiting body lectins CGL1 and CGL2. Based on these findings, we propose that filamentous fungi possess an inducible resistance against predators and parasites mediated by lectins that are specific for glycans of these antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.