A collection of 250 foliar endophytes of Picea glauca (white spruce) yielded several isolates that produced metabolites toxic to Choristoneura fumiferana (spruce budworm). Three of these strains were selected for further study based on their ability to be cultured and produce secondary metabolites under laboratory conditions. The culture filtrate of each was extracted and analyzed by LC-MS and LC-NMR, and the major metabolites were isolated and characterized. Structures were elucidated by spectroscopic analyses including 2D NMR and HRMS and by comparison to literature data. In some cases the extract was methylated in order to facilitate separation, but the original natural structure was determined by comparing the NMR data of the isolated methylated product with that of the stop-flow NMR of the underivatized extract (i.e., 2a, 2b, and 4). Two of these metabolites, 1 and 2a, are new structures, 3 and 4 are reported here for the first time as fungal metabolites, and 5- 10 as known fungal metabolites from other species. Tyrosol (10) was the only common metabolite found in all three extracts but did not account for the observed toxicity to C. fumiferana.
In vitro and in vivo studies have shown that building-associated Penicillium spores and spore extracts can induce significant inflammatory responses in lung cells and animal models of lung disease. However, because spores and spore extracts comprise mixtures of bioactive constituents often including toxins, it is impossible to resolve which constituent mediates inflammatory responses. This study examined dose-response (0.5 nM, 2.5 nM, 5.0 nM, 12.5 nM/g body weight (BW) animal) and time-course (3, 6, 24 and 48 h post instillation (PI)) relationships associated with inflammatory and cytotoxic responses in mouse lungs intratracheally instilled with pure brevianamide A, mycophenolic acid, and roquefortine C. High doses (5.0 nM and/or 12.5 nM/g BW animal) of brevianamide A and mycophenolic acid, the dominant metabolites of P. brevicompactum, and roquefortine C, the dominant metabolite of P. chrysogenum, induced significant inflammatory responses within 6 h PI, expressed as differentially elevated macrophage, neutrophil, MIP-2, TNF, and IL-6 concentrations in the bronchioalveolar lavage fluid (BALF) of intratracheally exposed mice. Macrophage and neutrophil numbers were maximal at 24 h PI; responses of the other inflammatory markers were maximal at 6 h PI. Except for macrophage numbers in mycophenolic acid-treatment animals, cells exhibited significant dose-dependent-like responses; for the chemo-/cytokine markers, dose dependency was lacking except for MIP-2 concentration in brevianamide A-treatment animals. It was also found that brevianamide A induced cytotoxicity expressed as significantly increased LDH concentration in mouse BALF, at concentrations of 12.5 nM/g BW animal and at 6 and 24 h PI. Albumin concentrations, measured as a nonspecific marker of vascular leakage, were significantly elevated in the BALF of mice treated with 12.5 nM/g nM brevianamide A/animal from 6 to 24 h PI and in > or =5.0 nM/g mycophenolic acid-treated animals at 6 to 24 h PI. These results suggest that these three toxins from Penicillium species common on damp materials in residential housing provoke compound-specific toxic responses with different toxicokinetics. Moreover, that these toxins can stimulate significant inflammatory responses in vivo might help explain some of the indoor effects associated with Penicillium spore exposures in indoor environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.