In this study, novel flexible micro-scale humidity sensors were directly fabricated in graphene oxide (GO) and polyimide (PI) using ion beam writing without any further modifications, and then successfully tested in an atmospheric chamber. Two low fluences (3.75 × 1014 cm−2 and 5.625 × 1014 cm−2) of carbon ions with an energy of 5 MeV were used, and structural changes in the irradiated materials were expected. The shape and structure of prepared micro-sensors were studied using scanning electron microscopy (SEM). The structural and compositional changes in the irradiated area were characterized using micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Rutherford back-scattering spectroscopy (RBS), energy-dispersive X-ray spectroscopy (EDS), and elastic recoil detection analysis (ERDA) spectroscopy. The sensing performance was tested at a relative humidity (RH) ranging from 5% to 60%, where the electrical conductivity of PI varied by three orders of magnitude, and the electrical capacitance of GO varied in the order of pico-farads. In addition, the PI sensor has proven long-term sensing stability in air. We demonstrated a novel method of ion micro-beam writing to prepare flexible micro-sensors that function over a wide range of humidity and have good sensitivity and great potential for widespread applications.
This work deals with the modification of polymeric nanofibers of polyamide 6 (PA6) and polyvinylidene fluoride (PVDF) which were formed by electrospinning process. After the manufacturing process, the polymer nanofibers were exposed to the implantation of 1 MeV H+ ions on a tandem accelerator Tandetron MC 4130. The ion implantation was provided with different ion fluences (1.8; 3.7; 5.6)×1014 cm-2. Ion implantation of polymer nanofibers can modify their functional properties due to ion interaction with nanofibers changing their structure and elemental composition. H-ion interaction with nanofibers was simulated by SRIM program which shows the modification of polymers by prevailing electronic stopping. Rutherford Back-Scattering spectrometry (RBS) and Elastic Recoil Detection Analysis (ERDA) show distinct elemental modification in the irradiated layer of PVDF and PA6 nanofibers. The changes in surface chemistry was identified by X-ray Photoelectron Spectroscopy (XPS). The identified chemical changes contributed to the changes of electrical properties (increase of electrical conductivity) being measured by the standard two-point method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.