[1] A 9-year time series of SeaWiFS remotely-sensed ocean color data is used to examine temporal trends in the ocean's most oligotrophic waters, those with surface chlorophyll not exceeding 0.07 mg chl/m 3 . In the North and South Pacific, North and South Atlantic, outside the equatorial zone, the areas of low surface chlorophyll waters have expanded at average annual rates from 0.8 to 4.3%/yr and replaced about 0.8 million km 2 /yr of higher surface chlorophyll habitat with low surface chlorophyll water. It is estimated that the low surface chlorophyll areas in these oceans combined have expanded by 6.6 million km 2 or by about 15.0% from 1998 through 2006. In both hemispheres, evidence shows a more rapid expansion of the low surface chlorophyll waters during the winter. The North Atlantic, which has the smallest oligotrophic gyre is expanding most rapidly, both annually at 4.3%/yr and seasonally, in the first quarter at 8.5%/yr. Mean sea surface temperature in each of these 4 subtropical gyres also increased over the 9-year period. The expansion of the low chlorophyll waters is consistent with global warming scenarios based on increased vertical stratification in the mid-latitudes, but the rates of expansion we observe already greatly exceed recent model predictions.Citation: Polovina, J. J., E. A. Howell, and M. Abecassis (2008), Ocean's least productive waters are expanding, Geophys.
Abstract. Error-quantified, synoptic-scale relationships between chlorophyll-a (Chl-a) and phytoplankton pigment groups at the sea surface are presented. A total of ten pigment groups were considered to represent three Phytoplankton Size Classes (PSCs, micro-, nano-and picoplankton) and seven Phytoplankton Functional Types (PFTs, i.e. diatoms, dinoflagellates, green algae, prymnesiophytes (haptophytes), pico-eukaryotes, prokaryotes and Prochlorococcus sp.). The observed relationships between Chl-a and PSCs/PFTs were well-defined at the global scale to show that a community shift of phytoplankton at the basin and global scales is reflected by a change in Chl-a of the total community. Thus, Chl-a of the total community can be used as an index of not only phytoplankton biomass but also of their community structure. Within these relationships, we also found nonmonotonic variations with Chl-a for certain pico-sized phytoplankton (pico-eukaryotes, Prokaryotes and Prochlorococcus sp.) and nano-sized phytoplankton (Green algae, prymnesiophytes). The relationships were quantified with a leastsquare fitting approach in order to enable an estimation of the PFTs from Chl-a where PFTs are expressed as a percentageCorrespondence to: T. Hirata (tahi@ees.hokudai.ac.jp) of the total Chl-a. The estimated uncertainty of the relationships depends on both PFT and Chl-a concentration. Maximum uncertainty of 31.8% was found for diatoms at Chla = 0.49 mg m −3 . However, the mean uncertainty of the relationships over all PFTs was 5.9% over the entire Chl-a range observed in situ (0.02 < Chl-a < 4.26 mg m −3 ). The relationships were applied to SeaWiFS satellite Chl-a data from 1998 to 2009 to show the global climatological fields of the surface distribution of PFTs. Results show that microplankton are present in the mid and high latitudes, constituting only ∼10.9% of the entire phytoplankton community in the mean field for 1998-2009, in which diatoms explain ∼7.5%. Nanoplankton are ubiquitous throughout the global surface oceans, except the subtropical gyres, constituting ∼45.5%, of which prymnesiophytes (haptophytes) are the major group explaining ∼31.7% while green algae contribute ∼13.9%. Picoplankton are dominant in the subtropical gyres, but constitute ∼43.6% globally, of which prokaryotes are the major group explaining ∼26.5% (Prochlorococcus sp. explaining 22.8%), while pico-eukaryotes explain ∼17.2% and are relatively abundant in the South Pacific. These results may be of use to evaluate global marine ecosystem models.
Satellite telemetry from 26 loggerhead (Caretta caretta) and 10 olive ridley (Lepidochelys olivacea) sea turtles captured and released from pelagic longline fishing gear provided information on the turtles’ position and movement in the central North Pacific. These data together with environmental data from satellite remote sensing are used to describe the oceanic habitat used by these turtles. The results indicate that loggerheads travel westward, move seasonally north and south primarily through the region 28–40°N, and occupy sea surface temperatures (SST) of 15–25°C. Their dive depth distribution indicated that they spend 40% of their time at the surface and 90% of their time at depths <40 m. Loggerheads are found in association with fronts, eddies, and geostrophic currents. Specifically, the Transition Zone Chlorophyll Front (TZCF) and the southern edge of the Kuroshio Extension Current (KEC) appear to be important forage and migration habitats for loggerheads. In contrast, olive ridleys were found primarily south of loggerhead habitat in the region 8–31°N latitude, occupying warmer water with SSTs of 23–28°C. They have a deeper dive pattern than loggerheads, spending only 20% of their time at the surface and 60% shallower than 40 m. However, the three olive ridleys identified from genetics to be of western Pacific origin spent some time associated with major ocean currents, specifically the southern edge of the KEC, the North Equatorial Current (NEC), and the Equatorial Counter Current (ECC). These habitats were not used by any olive ridleys of eastern Pacific origin suggesting that olive ridleys from different populations may occupy different oceanic habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.