In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.
[1] A 9-year time series of SeaWiFS remotely-sensed ocean color data is used to examine temporal trends in the ocean's most oligotrophic waters, those with surface chlorophyll not exceeding 0.07 mg chl/m 3 . In the North and South Pacific, North and South Atlantic, outside the equatorial zone, the areas of low surface chlorophyll waters have expanded at average annual rates from 0.8 to 4.3%/yr and replaced about 0.8 million km 2 /yr of higher surface chlorophyll habitat with low surface chlorophyll water. It is estimated that the low surface chlorophyll areas in these oceans combined have expanded by 6.6 million km 2 or by about 15.0% from 1998 through 2006. In both hemispheres, evidence shows a more rapid expansion of the low surface chlorophyll waters during the winter. The North Atlantic, which has the smallest oligotrophic gyre is expanding most rapidly, both annually at 4.3%/yr and seasonally, in the first quarter at 8.5%/yr. Mean sea surface temperature in each of these 4 subtropical gyres also increased over the 9-year period. The expansion of the low chlorophyll waters is consistent with global warming scenarios based on increased vertical stratification in the mid-latitudes, but the rates of expansion we observe already greatly exceed recent model predictions.Citation: Polovina, J. J., E. A. Howell, and M. Abecassis (2008), Ocean's least productive waters are expanding, Geophys.
Satellite telemetry from 26 loggerhead (Caretta caretta) and 10 olive ridley (Lepidochelys olivacea) sea turtles captured and released from pelagic longline fishing gear provided information on the turtles’ position and movement in the central North Pacific. These data together with environmental data from satellite remote sensing are used to describe the oceanic habitat used by these turtles. The results indicate that loggerheads travel westward, move seasonally north and south primarily through the region 28–40°N, and occupy sea surface temperatures (SST) of 15–25°C. Their dive depth distribution indicated that they spend 40% of their time at the surface and 90% of their time at depths <40 m. Loggerheads are found in association with fronts, eddies, and geostrophic currents. Specifically, the Transition Zone Chlorophyll Front (TZCF) and the southern edge of the Kuroshio Extension Current (KEC) appear to be important forage and migration habitats for loggerheads. In contrast, olive ridleys were found primarily south of loggerhead habitat in the region 8–31°N latitude, occupying warmer water with SSTs of 23–28°C. They have a deeper dive pattern than loggerheads, spending only 20% of their time at the surface and 60% shallower than 40 m. However, the three olive ridleys identified from genetics to be of western Pacific origin spent some time associated with major ocean currents, specifically the southern edge of the KEC, the North Equatorial Current (NEC), and the Equatorial Counter Current (ECC). These habitats were not used by any olive ridleys of eastern Pacific origin suggesting that olive ridleys from different populations may occupy different oceanic habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.