Fire-generated tornadic vortices (FGTVs) linked to deep pyro-convection, including pyrocumulonimbi (pyroCbs), are a potentially deadly, yet poorly understood wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high impact wildfires during the 2020 fire season in California, USA. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s-1 (60 kts), vortex depths of up to 4.9 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated meso-scale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form.
Fire-generated tornadic vortices (FGTVs) linked to pyrocumulonimbi (pyroCb) are a potentially deadly, yet poorly understood and seldom observed wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high impact wildfires during the 2020 fire season in California, USA. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s-1 (60 kts), vortex depths of up to 5 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated meso-scale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep-pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form.
Previous work has considered tornado occurrence with respect to radar data, both WSR-88D and mobile research radars, and a few studies have examined techniques to potentially improve tornado warning performance. To date, though, there has been little work focusing on systematic, large-sample evaluation of National Weather Service (NWS) tornado warnings with respect to radar-observable quantities and the near-storm environment. In this work, three full years (2016–2018) of NWS tornado warnings across the contiguous United States were examined, in conjunction with supporting data in the few minutes preceding warning issuance, or tornado formation in the case of missed events. The investigation herein examines WSR-88D and Storm Prediction Center (SPC) mesoanalysis data associated with these tornado warnings with comparisons made to the current Warning Decision Training Division (WDTD) guidance.Combining low-level rotational velocity and the significant tornado parameter (STP), as used in prior work, shows promise as a means to estimate tornado warning performance, as well as relative changes in performance as criteria thresholds vary. For example, low-level rotational velocity peaking in excess of 30 kt (15 m s−1), in a near-storm environment which is not prohibitive for tornadoes (STP > 0), results in an increased probability of detection and reduced false alarms compared to observed NWS tornado warning metrics. Tornado warning false alarms can also be reduced through limiting warnings with weak (<30 kt), broad (>1nm) circulations in a poor (STP=0) environment, careful elimination of velocity data artifacts like sidelobe contamination, and through greater scrutiny of human-based tornado reports in otherwise questionable scenarios.
Providing timely warnings for severe and potentially tornadic convection is a critical component of the NWS mission, and owing to the associated large reflectivity gradients, sidelobe contamination is possible. This paper focuses on elevation sidelobe contamination appearing in the low-level inflow region of supercells. A qualitative conceptual model of the Weather Surveillance Radar - 1988 Doppler (WSR-88D) antenna pattern interacting with supercells is introduced, along with Doppler power spectrum representations of the potential mix of returned power from the main lobe and the sidelobes. These tools inform the multiple ways elevation sidelobe contamination appears in the low levels, primarily below 3 km (10 kft) of radar data. The most common manifestation is somewhat noisy data similar to particulates or biota in clear air. Trained NWS forecasters are accustomed to mentally filtering out noisy clear-air returns as less important. Elevation sidelobe contamination can be mixed with the Three Body Scatter Spike (TBSS) artifact, though the TBSS remains the more salient feature. The most consequential form is the apparent circulation, and when it is incorrectly interpreted as valid, contributes to the False Alarm Ratio (FAR) for NWS tornado warnings. Quantitative results on the effect of elevation sidelobe contamination on FAR are presented. Diagnostic techniques are emphasized, and with familiarization, can be used in real-time warning operations to identify the apparent circulation as either valid or an imposter. Identification of these contaminated velocity signatures offers a unique opportunity to reduce the NWS tornado warning FAR without also reducing the Probability of Detection (POD).
A multicell cluster of thunderstorms moved into northern Indiana during the early afternoon hours of 29 June 2012, later evolving into a mature bowing mesoscale convective system (MCS) by the time it exited the County Warning Area of the Northern Indiana National Weather Service. This was the beginning of a derecho that would continue across the Appalachian Mountains and off the Atlantic coast, traveling 1000 km in 10 h and resulting in at least 18 fatalities. This derecho produced a measured wind gust of 41 m s-1 (79 kt) at Fort Wayne International Airport, the highest measured gust along the derecho’s path. The mesoscale environment was characterized by a strong cold pool, extreme instability (including near-record steep midlevel lapse rates), and weak to moderate vertical shear. This paper examines the source of this extreme environment as well as the catalyst for the sustainability of the MCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.