Due to the rapid growth of information available about individual patients, most physicians suffer from information overload when they review patient information in health information technology systems. In this manuscript, we present a novel hybrid dynamic and multi-collaborative filtering method to improve information retrieval from electronic health records. This method recommends relevant information from electronic health records for physicians during patient visits. It models information search dynamics using a Markov model. It also leverages the key idea of collaborative filtering, originating from Recommender Systems, to prioritize information based on various similarities among physicians, patients and information items. We tested this new method using real electronic health record data from the Indiana Network for Patient Care. Our experimental results demonstrated that for 46.7% of testing cases, this new method is able to correctly prioritize relevant information among top-5 recommendations that physicians are truly interested in.
Due to the rapid growth of information available about individual patients, most physicians suffer from information overload and inefficiencies when they review patient information in health information technology systems. In this paper, we present a novel hybrid dynamic and multi-collaborative filtering method to improve information retrieval from electronic health records. This method recommends relevant information from electronic health records to physicians during patient visits. It models information search dynamics using a Markov model. It also leverages the key idea of collaborative filtering, originating from Recommender Systems, for prioritizing information based on various similarities among physicians, patients and information items. We tested this new method using electronic health record data from the Indiana Network for Patient Care, a large, inter-organizational clinical data repository maintained by the Indiana Health Information Exchange. Our experimental results demonstrated that, for top-5 recommendations, our method was able to correctly predict the information in which physicians were interested in 46.7% of all test cases. For top-1 recommendations, the corresponding figure was 24.7%. In addition, the new method was 22.3% better than the conventional Markov model for top-1 recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.