Abstract. A decline in the stature and abundance of willows during the 20th century occurred throughout the northern range of Yellowstone National Park, where riparian woody-plant communities are key components in multiple-trophic-level interactions. The potential causes of willow decline include climate change, increased elk browsing coincident with the loss of an apex predator, the gray wolf, and an absence of habitat engineering by beavers. The goal of this study was to determine the spatial and temporal patterns of willow establishment through the 20th century and to identify causal processes. Sampled willows established from 1917 to 1999 and contained far fewer young individuals than was predicted from a modeled stable willow population, indicating reduced establishment during recent decades. Two hydrologically distinct willow establishment environments were identified: finegrained beaver pond sediments and coarse-grained alluvium. Willows established on beaver pond sediment earlier in time, higher on floodplain surfaces, and farther from the current stream channel than did willows on alluvial sediment. Significant linear declines from the 1940s to the 1990s in alluvial willow establishment elevation and lateral distance from the stream channel resulted in a much reduced area of alluvial willow establishment. Willow establishment was not well correlated with climate-driven hydrologic variables, but the trends were consistent with the effects of stream channel incision initiated in ca. 1950, 20-30 years after beaver dam abandonment. Radiocarbon dates and floodplain stratigraphy indicate that stream incision of the present magnitude may be unprecedented in the past two millennia. We propose that hydrologic changes, stemming from competitive exclusion of beaver by elk overbrowsing, caused the landscape to transition from a historical beaver-pond and willowmosaic state to its current alternative stable state where active beaver dams and many willow stands are absent. Because of hydrologic changes in streams, a rapid return to the historical state may not occur by reduction of elk browsing alone. Management intervention to restore the historical hydrologic regime may be necessary to recover willows and beavers across the landscape.
Neuronal precursor proliferation and axodendritic outgrowth have been traditionally regarded as discrete and sequential developmental stages. However, we recently found that sympathetic neuroblasts in vitro often elaborate long neuritic processes before dividing. Furthermore, these "paramitotic" neurites were maintained during cell division and neuritic morphology was consistently preserved by daughter cells after mitosis. This inheritance of neuritic morphology in vitro raised the possibility that proliferating neuroblasts engage in axodendritic outgrowth. To determine whether mitotic superior cervical ganglion (SCG) neuroblasts are engaged in pathfinding in vivo, we have combined retrograde axonal tracing of efferent nerve trunks with bromodeoxyuridine (BrdU) labeling of cells in S-phase. In fact, about 13% of BrdU(+) cells were retrogradely labeled, indicating that mitotic neuroblasts often have extraganglionic axonal projections. Moreover, the presence of axons during S-phase was observed at two developmental ages (E15.5 and E16. 5), implicating an ongoing function of paramitotic axons during neuronal ontogeny. Using a calculation to account for experimental limitations, we estimate that virtually all mitotic SCG neuroblasts have direct access to extraganglionic signals during development. We conclude that mitotic neuronal precursors in vivo engage in pathfinding, raising the possibility that interaction of proliferating populations with distant signals actively coordinates cell division and neural connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.