To define relationships among marrow stromal cells (MSCs), multipotential progenitors, committed precursors, and derived neurons, we examined differentiation, mitosis, and apoptosis in vitro. Neural induction medium morphologically converted over 70% of MSCs to typical neurons, which expressed tau, neuronal nuclear antigen, neuron-specific enolase, and TUC-4 within 24 hours. A subset decreased fibronectin expression, consistent with mesenchymal to neuroectodermal conversion. More than 35% of differentiating neurons incorporated bromodeoxyuridine (BrdU) and divided, increasing cell number by 60%, while another subpopulation differentiated without incorporating BrdU or dividing. Inhibition of mitosis and DNA synthesis did not prevent neural differentiation, with 70% of blocked cells expressing tau and displaying neuronal morphologies. By deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, less than 1% of cells underwent apoptosis at 36 and 72 hours, suggesting differentiation without cell-selective mechanisms. Apparently, MSCs may directly differentiate into neurons without passing through a mitotic stage, suggesting that distinctions among stem cells, progenitors, and precursors are more flexible than formerly recognized.