Immunohistochemical techniques were used to examine the presence and co-localisation of a range of putative neurotransmitters and other neuronal markers in the myenteric plexus of the small and large intestine of the mouse. Distinct sub-populations of myenteric neurons were identified, based on the combinations of substances they contained and the distribution of their fibres. In the small intestine, there were two major classes of circular muscle motor neurons; one class was characterised by the presence of nitric oxide synthase, vasoactive intestinal peptide plus neuropeptide Y (NOS/VIP/NPY), and the second class contained calretinin plus substance P (CalR/SP). There were seven classes of neurons that innervated myenteric ganglia; these contained nos, vip, nos/vip, npy, calr/calbindin (calb), sp or 5-ht. In the large intestine, there were five major classes of motor neurons that contained nos, nos/vip, gaba, sp, or calr/sp, and seven major classes of neurons that innervated myenteric ganglia and contained nos, vip, calr/calb, calr, sp, gaba or 5-ht. Although some aspects of the patterns of co-localisation are similar to those in other species, this study re-inforces recent analyses that indicate significant species differences in neurochemical patterns in the enteric neurons of different species.
Enteric neurons and glia arise from the neural crest. The phenotype of crest-derived cells was examined as they differentiated into neurons or glia in the mouse small and large intestine. Previous studies have shown that undifferentiated enteric crest-derived cells are Phox2b(+)/Ret(+)/p75(+)/Sox10(+), and at embryonic day (E) 10.5, about 10-15% of the crest-derived cells in the small intestine have started to differentiate into neurons. In the current study, by E12.5 and E14.5, about 25% and 47%, respectively, of Phox2b(+) cells in the small intestine were immunoreactive to the pan-neuronal protein, ubitquitin hydrolase (PGP9.5), and the percentage did not change dramatically from E14.5 onward. The differentiation of crest-derived cells into neurons in the colon lagged behind that in the small intestine by several days. Differentiating enteric neurons showed high Ret, low p75, and undetectable Sox10 immunostaining. Glial precursors were identified by the presence of brain-specific fatty acid binding protein (B-FABP) and detected first in the fore- and rostral midgut at E11.5. Glial precursors appeared to be B-FABP(+)/Sox10(+)/p75(+) but showed low Ret immunostaining. S100b was not detected until E14.5. Adult glial cells were B-FABP(+)/Sox10(+)/p75(+)/S100b(+). A nucleic acid stain (to identify all ganglion cells) was combined with immunostaining for PGP9.5 and S100b to detect neurons and glial cells, respectively, in the postnatal intestine. At postnatal day 0, fewer than 5% and 10% of cells in myenteric ganglia of the small and large intestine, respectively, were neither PGP9.5(+) nor S100b(+). Because some classes of neurons are not present in significant numbers until after birth, the expression of PGP9.5 by developing enteric neurons appeared to precede the expression of neuron type-specific markers.
Neural crest-derived cells that form the enteric nervous system undergo an extensive migration from the caudal hindbrain to colonize the entire gastrointestinal tract. Mice in which the expression of GFP is under the control of the Ret promoter were used to visualize neural crest-derived cell migration in the embryonic mouse gut in organ culture. Time-lapse imaging revealed that GFP(+) crest-derived cells formed chains that displayed complicated patterns of migration, with sudden and frequent changes in migratory speed and trajectories. Some of the leading cells and their processes formed a scaffold along which later cells migrated. To examine the effect of population size on migratory behavior, a small number of the most caudal GFP(+) cells were isolated from the remainder of the population. The isolated cells migrated slower than cells in large control populations, suggesting that migratory behavior is influenced by cell number and cell-cell contact. Previous studies have shown that neurons differentiate among the migrating cell population, but it is unclear whether they migrate. The phenotype of migrating cells was examined. Migrating cells expressed the neural crest cell marker, Sox10, but not neuronal markers, indicating that the majority of migratory cells observed did not have a neuronal phenotype.
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
The colonization of the rodent gastrointestinal tract by enteric neuron precursors is controversial due to the lack of specific cellular markers at early stages. The transcription factor, Phox2b, is expressed by enteric neuron precursors (Pattyn et al. Development 124, 4065-4075, 1997). In this study, we have used an antiserum to Phox2b to characterize in detail the spatiotemporal expression of Phox2b in the gastrointestinal tract of adult mice and embryonic mice and rats. In adult mice, all enteric neurons (labeled with neuron-specific enolase antibodies), and a subpopulation of glial cells (labeled with GFAP antibodies), showed immunoreactivity to Phox2b. In embryonic mice, the appearance of Phox2b-immunoreactive cells was mapped during development of the gastrointestinal tract. At Embryonic Days 9.5-10 (E9.5-10), Phox2b-labeled cells were present only in the stomach, and during subsequent development, labeled cells appeared as a single rostrocaudal wave along the gastrointestinal tract; at E14 Phox2b-labeled cells were present along the entire length of the gastrointestinal tract. Ret and p75 have also been reported to label migratory-stage enteric neuron precursors. A unidirectional, rostral-to-caudal colonization of the gastrointestinal tract of embryonic mice by Ret- and p75-immunoreactive cells was also observed, and the locations of Ret- and p75-positive cells within the gut were very similar to that of Phox2b-positive cells. To verify the location of enteric neuron precursors within the gut, explants from spatiotemporally defined regions of embryonic intestine, 0.3-3 mm long, were grown in the kidney subcapsular space, or in catenary organ culture, and examined for the presence of neurons. The location and sequence of appearance of enteric neuron precursors deduced from the explants grown under the kidney capsule or in organ culture was very similar to that seen with the Phox2b, Ret, and p75 antisera. Previous studies have mapped the rostrocaudal colonization of the rat intestine by enteric neuron precursors using HNK-1 as a marker. In the current study, all HNK-1-labeled cells in the gastrointestinal tract of rat embryos showed immunoreactivity to Phox2b, but HNK-1 cells comprised only a small subpopulation of the Phox2b-labeled cells. In addition, in rats, Phox2b-labeled cells were present in advance of (more caudal to) the most caudal HNK-1-labeled cells by 600-700 microm in the hindgut at E15. We conclude that the neural crest cell population that arises from the vagal level of the neural axis and that populates the stomach, midgut, and hindgut expresses Phox2b, Ret, and p75. In contrast, the sacral-level neural crest cells that populate the hindgut either do not express, or show a delayed expression of, all of the known markers of vagal- and trunk-level neural crest cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.