The colonization of the rodent gastrointestinal tract by enteric neuron precursors is controversial due to the lack of specific cellular markers at early stages. The transcription factor, Phox2b, is expressed by enteric neuron precursors (Pattyn et al. Development 124, 4065-4075, 1997). In this study, we have used an antiserum to Phox2b to characterize in detail the spatiotemporal expression of Phox2b in the gastrointestinal tract of adult mice and embryonic mice and rats. In adult mice, all enteric neurons (labeled with neuron-specific enolase antibodies), and a subpopulation of glial cells (labeled with GFAP antibodies), showed immunoreactivity to Phox2b. In embryonic mice, the appearance of Phox2b-immunoreactive cells was mapped during development of the gastrointestinal tract. At Embryonic Days 9.5-10 (E9.5-10), Phox2b-labeled cells were present only in the stomach, and during subsequent development, labeled cells appeared as a single rostrocaudal wave along the gastrointestinal tract; at E14 Phox2b-labeled cells were present along the entire length of the gastrointestinal tract. Ret and p75 have also been reported to label migratory-stage enteric neuron precursors. A unidirectional, rostral-to-caudal colonization of the gastrointestinal tract of embryonic mice by Ret- and p75-immunoreactive cells was also observed, and the locations of Ret- and p75-positive cells within the gut were very similar to that of Phox2b-positive cells. To verify the location of enteric neuron precursors within the gut, explants from spatiotemporally defined regions of embryonic intestine, 0.3-3 mm long, were grown in the kidney subcapsular space, or in catenary organ culture, and examined for the presence of neurons. The location and sequence of appearance of enteric neuron precursors deduced from the explants grown under the kidney capsule or in organ culture was very similar to that seen with the Phox2b, Ret, and p75 antisera. Previous studies have mapped the rostrocaudal colonization of the rat intestine by enteric neuron precursors using HNK-1 as a marker. In the current study, all HNK-1-labeled cells in the gastrointestinal tract of rat embryos showed immunoreactivity to Phox2b, but HNK-1 cells comprised only a small subpopulation of the Phox2b-labeled cells. In addition, in rats, Phox2b-labeled cells were present in advance of (more caudal to) the most caudal HNK-1-labeled cells by 600-700 microm in the hindgut at E15. We conclude that the neural crest cell population that arises from the vagal level of the neural axis and that populates the stomach, midgut, and hindgut expresses Phox2b, Ret, and p75. In contrast, the sacral-level neural crest cells that populate the hindgut either do not express, or show a delayed expression of, all of the known markers of vagal- and trunk-level neural crest cells.
The interstitial cells of Cajal (ICC) are found in a number of different locations in the gastrointestinal tract, where they form close associations with both muscle cells and nerve terminals. In this study we examined the embryological origin of ICC in the mouse intestine to determine whether they arise from the neural crest or from the intestinal wall. Segments of intestine were removed from embryonic mice either before or after the arrival of neural crest cells (the precursors of enteric neurons and glial cells) and transplanted under the renal capsule of host (adult) mice and allowed to develop for 18-41 days. In the mouse intestine, antibodies to c-kit protein selectively label ICC at a variety of locations, and antibodies to the NK1 receptor (the receptor for substance P) labels ICC at the level of the deep muscular plexus in the small intestine and a subpopulation of enteric neurons in the large intestine. The presence of neurons in the explants was examined using antisera to neuron-specific enolase, substance P, and calretinin. In segments of small and large intestine explanted after the arrival of neural crest cells, immunoreactive neurons and c-kit- and NK1-immunoreactive ICC were present with a distribution similar to that seen in control tissue at a similar developmental age. In segments of large intestine explanted before the arrival of neural crest cells, neurons were not present; however, c-kit-immunoreactive ICC were present in these aneuronal explants, indicating that ICC do not arise from the neural crest. The source of ICC in mammals is therefore likely to be the mesenchyme of the gut.
Although neurons containing neuronal nitric oxide synthase (NOS) are abundant in the myenteric plexus of the small intestine of all mammalian species examined to date, NOS-containing neurons are sparse in the submucous plexus, and there does not appear to be an innervation of the mucosa by nerve fibres containing NOS. In this study, we used immunohistochemical techniques to examine the presence of neuronal NOS in the mouse intestine during development. At embryonic day 18 and postnatal day 0 (P0), about 50% of the neurons in the submucous plexus of the small intestine showed strong immunoreactivity to NOS, and NOS-immunoreactive nerve fibres were present in the mucosa. By P7, there was a gradation in the intensity of NOS immunostaining exhibited by submucosal neurons, varying from intense to extremely weak. During subsequent development, the proportion of submucous neurons showing NOS immunoreactivity decreased, and immunoreactive nerve fibres were no longer observed in the mucosa. In adult mice, NOS neurons comprised only 3% of neurons in the submucous plexus, which is significantly less than at P0. In contrast to the submucous plexus, the percentage of neurons that showed NOS immunoreactivity in the myenteric plexus did not change significantly during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.