Though a large fraction of primary production and organic matter cycling in the oceans occurs on continental shelves dominated by sandy deposits, the microbial communities associated with permeable shelf sediments remain poorly characterized. Therefore, in this study, we provide the first detailed characterization of microbial diversity in marine sands of the South Atlantic Bight through parallel analyses of small-subunit (SSU) rRNA gene (Bacteria), nosZ (denitrifying bacteria), and amoA (ammonia-oxidizing bacteria) sequences. Communities were analyzed by parallel DNA extractions and clone library construction from both sediment core material and manipulated sediment within column experiments designed for geochemical rate determinations. Rapid organic-matter degradation and coupled nitrification-denitrification were observed in column experiments at flow rates resembling in situ conditions over a range of oxygen concentrations. Numerous SSU rRNA phylotypes were affiliated with the phyla Proteobacteria (classes Alpha-, Delta-, and Gammaproteobacteria), Planctomycetes, Cyanobacteria, Chloroflexi, and Bacteroidetes. Detectable sequence diversity of nosZ and SSU rRNA genes increased in stratified redox-stabilized columns compared to in situ sediments, with the Alphaproteobacteria comprising the most frequently detected group. Alternatively, nitrifier communities showed a relatively low and stable diversity that did not covary with the other gene targets. Our results elucidate predominant phylotypes that are likely to catalyze carbon and nitrogen cycling in marine sands. Although overall diversity increased in response to redox stabilization and stratification in column experiments, the major phylotypes remained the same in all of our libraries, indicating that the columns sufficiently mimic in situ conditions. Sandy sediments cover large areas of the shallow ocean, and recent technological developments in marine geochemistry have revealed that these sediments rapidly recycle organic matter and have the potential to play a large role in global biogeochemical cycles (22,25,34,50). In fine-grained sediments that have been studied more extensively, molecular diffusion limits aerobic and suboxic microbial metabolism to a thin surface layer (26). In contrast, the high permeability of sands allows for rapid exchange of pore water with the overlying water column, thereby enhancing the transport of microbial substrates into and metabolic waste products out of the sedi-
Sandy or permeable sediment deposits cover the majority of the shallow ocean seafloor, and yet the associated bacterial communities remain poorly described. The objective of this study was to expand the characterization of bacterial community diversity in permeable sediment impacted by advective pore water exchange and to assess effects of spatial, temporal, hydrodynamic, and geochemical gradients. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze nearly 100 sediment samples collected from two northeastern Gulf of Mexico subtidal sites that primarily differed in their hydrodynamic conditions. Communities were described across multiple taxonomic levels using universal bacterial small subunit (SSU) rRNA targets (RNA-and DNA-based) and functional markers for nitrification (amoA) and denitrification (nosZ). Clonal analysis of SSU rRNA targets identified several taxa not previously detected in sandy sediments (i.e., Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Firmicutes). Sequence diversity was high among the overall bacterial and denitrifying communities, with members of the Alphaproteobacteria predominant in both. Diversity of bacterial nitrifiers (amoA) remained comparatively low and did not covary with the other gene targets. TRFLP fingerprinting revealed changes in sequence diversity from the family to species level across sediment depth and study site. The high diversity of facultative denitrifiers was consistent with the high permeability, deeper oxygen penetration, and high rates of aerobic respiration determined in these sediments. The high relative abundance of Gammaproteobacteria in RNA clone libraries suggests that this group may be poised to respond to short-term periodic pulses of growth substrates, and this observation warrants further investigation.
Organisms inhabiting the sub-zero waters surrounding Antarctica display remarkably narrow tolerances for environmental change. This study assessed three closely related fish exposed to simultaneous changes in oceanic conditions to ascertain the impact additive stress has on their capacity to acclimate and whether or not these fish employ similar metabolic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.