Much progress has been made in elucidating the biochemical and molecular mechanisms that underlie aflatoxin carcinogenesis. In humans, biotransformation of AFB1 to the putative carcinogenic intermediate. AFB-8,9-exo-epoxide, occurs predominantly by cytochromes P450 1A2 and 3A4, with the relative importance of each dependent upon the relative magnitude of expression of the respective enzymes in liver. Genetic variability in the expression of these and other cytochromes P450 may result in substantial interindividual differences in susceptibility to the carcinogenic effects of aflatoxins. Detoxification of AFB-8,9-epoxide by a specific alpha class glutathione S-transferase is an important protective mechanism in mice, and it accounts for the resistance of this species to the carcinogenic effects of AFB. This particular form of GST is expressed constitutively only at low levels in rats, but it is inducible by antioxidants such as ethoxyquin, and it accounts for much of the chemoprotective effects of a variety of substances, including natural dietary components that putatively act via an "antioxidant response element" (ARE). In humans, the constitutively expressed GSTs have very little activity toward AFB1-8,9-exo-epoxide, suggesting that--on a biochemical basis--humans should be quite sensitive to the genotoxic effects of aflatoxins. If a gene encoding a high aflatoxin-active form of GST is present in the human genome, but is not constitutively expressed, and is inducible by dietary antioxidants (as occurs in rats), then chemo- and/or dietary intervention measures aimed at inducing this enzyme could be highly effective. However, as it is possible that human CYP 1A2 may also be inducible by these same chemicals (because of the possible presence of an ARE in this gene), the ultimate consequence of dietary treatment with chemicals that induce biotransformation enzymes via an ARE is uncertain. The balance of the rate of activation (exo-epoxide production) to inactivation (GST conjugation plus other P450-mediated non-epoxide oxidations) may be a strong indicator of individual and species susceptibility to aflatoxin carcinogenesis, if the experimental conditions are reflective of true dietary exposures. There is strong evidence that AFB-8,9-exo-epoxide binds to G:C rich regions of DNA, forming an adduct at the N7-position of guanine. Substantial evidence demonstrates that AFB1-8,9-epoxide can induce activating mutations in the ras oncogene in experimental animals, primarily at codon 12.(ABSTRACT TRUNCATED AT 400 WORDS)
Previous studies have suggested that there may be species-specific differences in the metabolism of polybrominated diphenyl ethers (PBDEs) among different fish species. In this study, we investigated the in vitro hepatic metabolism of eleven individual PBDE congeners (tri-through decaBDEs) in three different fish species: rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and Chinook salmon (O. tschwatcha). In addition, we evaluated the influence of PBDE structural characteristics (i.e., bromine substitution patterns) on metabolism. Six of the eleven congeners we evaluated, BDEs 99, 153, 183, 203, 208, and 209, were metabolically debrominated to lower brominated congeners. All of the congeners that were metabolized contained at least one meta-substituted bromine. Metabolites were not detected for congeners without one meta-substituted bromine (e.g., BDEs 28, 47, and 100). Metabolite formation rates were generally 10-100 times faster in carp than in trout and salmon. BDEs 47, 49, 101, 154, and 183 were the major metabolites observed in all three species with the exception of BDE 47, which was only detected in carp. Carp demonstrated a preference towards meta-debromination, while trout and salmon debrominated meta-and para-bromine atoms to an equal extent. We compared glutathione-S-transferase (GST) and deiodinase (DI) activity among all three species as these enzyme systems have been hypothesized to play a role in PBDE debromination among teleosts. Carp exhibited a preference for meta-deiodination of the thyroid hormone thyroxine, which was consistent with the preference for meta-debromination of PBDEs observed in carp.
Ensuring the health of aquatic ecosystems and identifying species at risk from the detrimental effects of environmental contaminants can be facilitated by integrating analytical chemical analysis with carefully selected biological endpoints measured in tissues of species of concern. These biological endpoints include molecular, biochemical and physiological markers (i.e. biomarkers) that when integrated, can clarify issues of contaminant bioavailability, bioaccumulation and ecological effects while enabling a better understanding of the effects of non-chemical stressors. In the case of contaminant stressors, an understanding of chemical modes of toxicity can be incorporated with diagnostic markers of aquatic animal physiology to help understand the health status of aquatic organisms in the field. Furthermore, new approaches in functional genomics and bioinformatics can help discriminate individual chemicals, or groups of chemicals among complex mixtures that may contribute to adverse biological effects. While the use of biomarkers is not a new paradigm, such approaches have been underutilized in the context of ecological risk assessment and natural resource damage assessment. From a regulatory standpoint, these approaches can help better assess the complex effects from coastal development activities to assessing ecosystem integrity pre- and post-development or site remediation.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.