The vulnerability of Cloud Computing Systems (CCSs) to Advanced Persistent Threats (APTs) is a significant concern to government and industry. We present a cloud architecture reference model that incorporates a wide range of security controls and best practices, and a cloud security assessment model-Cloud-Trust-that estimates high level security metrics to quantify the degree of confidentiality and integrity offered by a CCS or cloud service provider (CSP). Cloud-Trust is used to assess the security level of four multi-tenant IaaS cloud architectures equipped with alternative cloud security controls and to show the probability of CCS penetration (high value data compromise) is high if a minimal set of security controls are implemented. CCS penetration probability drops substantially if a cloud defense in depth security architecture is adopted that protects virtual machine (VM) images at rest, strengthens CSP and cloud tenant system administrator access controls, and which employs other network security controls to minimize cloud network surveillance and discovery of live VMs.
Mathematical models of predator-prey interactions in a patchy landscape are used to explore the evolution of dispersal into sink habitats. When evolution proceeds at a single trophic level (i.e., either prey or predator disperses), three evolutionary outcomes are observed. If predator-prey dynamics are stable in source habitats, then there is an evolutionarily stable strategy (ESS) corresponding to sedentary phenotypes residing in source habitats. If predator-prey dynamics are sufficiently unstable, then either an ESS corresponding to dispersive phenotypes or an evolutionarily stable coalition (ESC) between dispersive and sedentary phenotypes emerges. Dispersive phenotypes playing an ESS persist despite exhibiting, on average, a negative per capita growth rate in all habitats. ESCs occur if dispersal into sink habitats can stabilize the predator-prey interactions. When evolution proceeds at both trophic levels, any combination of monomorphic or dimorphic phenotypes at one or both trophic levels is observed. Coevolution is largely top-down driven. At low predator mortality rates in sink habitats, evolution of predator movement into sink habitats forestalls evolution of prey movement into sink habitats. Only at intermediate mortality rates is there selection for predator and prey movement. Our results also illustrate an evolutionary paradox of enrichment, in which enriching source habitats can reduce phenotypic diversity. abstract: Mathematical models of predator-prey interactions in a patchy landscape are used to explore the evolution of dispersal into sink habitats. When evolution proceeds at a single trophic level (i.e., either prey or predator disperses), three evolutionary outcomes are observed. If predator-prey dynamics are stable in source habitats, then there is an evolutionarily stable strategy (ESS) corresponding to sedentary phenotypes residing in source habitats. If predator-prey dynamics are sufficiently unstable, then either an ESS corresponding to dispersive phenotypes or an evolutionarily stable coalition (ESC) between dispersive and sedentary phenotypes emerges. Dispersive phenotypes playing an ESS persist despite exhibiting, on average, a negative per capita growth rate in all habitats. ESCs occur if dispersal into sink habitats can stabilize the predator-prey interactions. When evolution proceeds at both trophic levels, any combination of monomorphic or dimorphic phenotypes at one or both trophic levels is observed. Coevolution is largely top-down driven. At low predator mortality rates in sink habitats, evolution of predator movement into sink habitats forestalls evolution of prey movement into sink habitats. Only at intermediate mortality rates is there selection for predator and prey movement. Our results also illustrate an evolutionary paradox of enrichment, in which enriching source habitats can reduce phenotypic diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.