describes the in-depth relationship between the principles of sintering mechanisms, the theory of thermodynamics and kinematics of sintering, and process outcomes for binder jetting additive manufacturing.
The master sinter curve (MSC) is an empirical model used to predict the density of a part after being sintered. The model is typically applied to components that undergo isotropic shrinkage. Parts manufactured using binder jetting additive manufacturing (BJAM) are known to have nonuniform powder systems and high levels of anisotropy. This work explores the application of the master sinter curve to components made by BJAM. Cylindrical samples were manufactured with the long axis parallel (vertical), perpendicular (horizontal), and 45 deg to the printing direction. A bimodal blend of titanium powder (0–45 µm and 106–150 µm) was used to make samples with consistent green densities (ranging from 47.2% to 52.3%) between the different orientations. Samples were then sintered at heating rates of 1, 3, and 5 °C/min to a maximum of 1400 °C. After sintering, the samples showed significant variation between the different orientations, with vertical samples on average 7.6 ± 2.98% and 4.7 ± 1.20% denser than the horizontal and the 45 deg samples, respectively. The calculated apparent activation energies for sintering were within the same range for all orientations, 200–260 kJ/mol for vertical and 45 deg, and 140–260 kJ/mol for horizontal samples. Validation sinter runs showed that the density prediction errors of the master sinter curves were between 0.9% and 4.3%. This work shows that the master sinter curve can be applied to predict the sintered density of components manufactured by binder jetting additive manufacturing.
The adoption of metal binder jetting additive manufacturing (AM) for functional parts relies on a deep understanding between the materials, the design aspects, the additive manufacturing process and sintering. This work focuses on the relationship between sintering theory and process outcomes. The data included in this article provides additional supporting information on the authors’ recent publication (Wheat et al., 2018 [1]) on the sinter structure analysis of commercially pure titanium parts manufactured using powder bed binder jetting additive manufacturing. For this work, commercially pure titanium was deployed to study the effect of powder size distributions on green and sintered part qualities (bulk density, relative density, particle size, pore size, sinter neck size). This manuscript includes the overall computed tomography visualization methods and results for the green and sintered samples using uni- and bi-modal powders. Moreover, the effective particle and pore size for the different batches of powder are presented.
Additive manufacturing quality assessment often relies on tensile testing as the preferred methodology to qualify builds and materials. The data included in this article provides additional supporting information on our manuscript (Shanbhag et al., 2021) on the effect of specimen geometry and orientation on tensile properties of Ti-6Al-4V manufactured by electron beam powder bed fusion. As such, the data in brief provides in-depth details on the tensile specimen specifications, the tensile specimen build layout and replicate notations, and the tensile testing datasets. The information presented herein complements the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.