In this paper, we conduct a study about differences between female and male discursive strategies when posting in the microblogging service Twitter, with a particular focus on the hashtag designation process during political debate. The fact that men and women use language in distinct ways, reverberating practices linked to their expected roles in the social groups, is a linguistic phenomenon known to happen in several cultures and that can now be studied on the Web and on online social networks in a large scale enabled by computing power. Here, for instance, after analyzing tweets with political content posted during Brazilian presidential campaign,we found out that male Twitter users, when expressing their attitude toward a given candidate, are more prone to use imperative verbal forms in hashtags, while female users tend to employ declarative forms. This difference can be interpreted as a sign of distinct approaches in relation to other network members: for example, if political hashtags are seen as strategies of persuasion in Twitter, imperative tags could be understood as more overt ways of persuading and declarative tags as more indirect ones. Our findings help to understand human gendered behavior in social networks and contribute to research on the new fields of computer-enabled Internet linguistics and social computing, besides being useful for several computational tasks such as developing tag recommendation systems based on users' collective preferences and tailoring targeted advertising strategies, among others.
Due to the recent “Right to be Forgotten” (RTBF) ruling, for queries about an individual, Google and other search engines now delist links to web pages that contain “inadequate, irrelevant or no longer relevant, or excessive” information about that individual. In this paper we take a data-driven approach to study the RTBF in the traditional media outlets, its consequences, and its susceptibility to inference attacks. First, we do a content analysis on 283 known delisted UK media pages, using both manual investigation and Latent Dirichlet Allocation (LDA). We find that the strongest topic themes are violent crime, road accidents, drugs, murder, prostitution, financial misconduct, and sexual assault. Informed by this content analysis, we then show how a third party can discover delisted URLs along with the requesters’ names, thereby putting the efficacy of the RTBF for delisted media links in question. As a proof of concept, we perform an experiment that discovers two previously-unknown delisted URLs and their corresponding requesters. We also determine 80 requesters for the 283 known delisted media pages, and examine whether they suffer from the “Streisand effect,” a phenomenon whereby an attempt to hide a piece of information has the unintended consequence of publicizing the information more widely. To measure the presence (or lack of presence) of a Streisand effect, we develop novel metrics and methodology based on Google Trends and Twitter data. Finally, we carry out a demographic analysis of the 80 known requesters. We hope the results and observations in this paper can inform lawmakers as they refine RTBF laws in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.