We study numerically the development of chimera states in networks of nonlocally coupled oscillators whose limit cycles emerge from a Hopf bifurcation. This dynamical system is inspired from population dynamics and consists of three interacting species in cyclic reactions. The complexity of the dynamics arises from the presence of a limit cycle and four fixed points. When the bifurcation parameter increases away from the Hopf bifurcation the trajectory approaches the heteroclinic invariant manifolds of the fixed points producing spikes, followed by long resting periods. We observe chimera states in this spiking regime as a coexistence of coherence (synchronization) and incoherence (desynchronization) in a one-dimensional ring with nonlocal coupling, and demonstrate that their multiplicity depends both on the system and the coupling parameters. We also show that hierarchical (fractal) coupling topologies induce traveling multichimera states. The speed of motion of the coherent and incoherent parts along the ring is computed through the Fourier spectra of the corresponding dynamics.
The dynamics of complex reactive schemes is known to deviate from the Mean Field (MF) theory when restricted on low dimensional spatial supports. This failure has been attributed to the limited number of species-neighbours which are available for interactions. In the current study, we introduce effective reactive parameters, which depend on the type of the spatial support and which allow for an effective MF description. As working example the Lattice Limit Cycle dynamics is used, restricted on a 2D square lattice with nearest neighbour interactions. We show that the MF steady state results are recovered when the kinetic rates are replaced with their effective values. The same conclusion holds when reactive stochastic rewiring is introduced in the system via long distance reactive coupling. Instead, when the stochastic coupling becomes diffusive the effective parameters no longer predict the steady state. This is attributed to the diffusion process which is an additional factor introduced into the dynamics and is not accounted for, in the kinetic MF scheme.
An abstract network approach is proposed for the description of the dynamics in reactive processes. The phase space of the variables (concentrations in reactive systems) is partitioned into a finite number of segments, which constitute the nodes of the abstract network. Transitions between the nodes are dictated by the dynamics of the reactive process and provide the links between the nodes. These are weighted networks, since each link weight reflects the transition rate between the corresponding states-nodes. With this construction the network properties mirror the dynamics of the underlying process and one can investigate the system properties by studying the corresponding abstract network. As a working example the Lattice Limit Cycle (LLC) model is used. Its corresponding abstract network is constructed and the transition matrix elements are computed via Kinetic (Dynamic) Monte Carlo simulations. For this model it is shown that the degree distribution follows a power law with exponent -1, while the average clustering coefficient c(N ) scales with the network size (number of nodes) N as c(N ) ∼ N −ν , ν ≃ 1.46. The computed exponents classify the LLC abstract reactive network into the scale-free networks. This conclusion corroborates earlier investigations demonstrating the formation of fractal spatial patterns in LLC reactive dynamics due to stochasticity and to the clustering of homologous species. The present construction of abstract networks (based on the partition of the phase space) is generic and can be implemented with appropriate adjustments in many dynamical systems and in time series analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.