Surgical reattachment of tendon to bone is a procedure marked by high failure rates. For example, nearly all rotator cuff repairs performed on elderly patients with massive tears ultimately result in recurrence of tearing. These high failure rates have been attributed to stress concentrations that arise due to the mechanical mismatch between tendon and bone. Although recent studies have identified potential adhesives with mechanical properties tuned to alleviate these stress concentrations, and thereby delay the onset of failure, resistance to the progression of failure has not been studied. Here, we refined the space of adhesive material properties that can improve surgical attachment by considering the fracture process. Using cohesive zone modelling and physiologically relevant values of mode I and mode II adhesive fracture toughnesses, we predicted the maximum displacement and strength at failure of idealized, adhesively bonded tendon-to-bone repairs. Repair failure occurred due to excessive relative displacement of the tendon and bone tissues for strong and compliant adhesives. The failure mechanism shifted to rupture of the entire repair for stiffer adhesives below a critical shear strength. Results identified a narrow range of materials on an Ashby chart that are suitable for adhesive repair of tendon to bone, including a range of elastomers and porous solids.
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities.One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.