The development of the chassis for the hydrogen fuel cell powered car has been involved in the designing and manufacturing aspects, while taking into consideration the mass, strength, stiffness, centre of gravity (COG), and manufacturing cost requirements. Towards this direction, a chassis design is proposed employing a space frame structure and constructed by an aluminium alloy with great strength. The structural design has been derived through the lightweight engineering approaches in conjunction with the part consolidation, Design for Assembly (DFA) and Design for Manufacture methods. Moreover, it has been performed in compliance with the safety regulations of the Shell Eco Marathon racing competition. The material's principal characteristics are the great strength, the low mass, as well as the great workability, machinability, and weldability. Following the national and global environmental issues, the recyclable characteristics of the aluminium alloy are an extra asset. Furthermore, the existence of aluminium alloy manufacturers around the fabricating area provides low cost supply and fast delivery benefits. The integration of the fuel cell powered vehicle is obtained through the designing and the manufacturing processes of the chassis and the parts fitted on the chassis. The manufacturing procedures are described thoroughly; mainly consisting of the cutting and welding processes and the assembling of the parts that are fitted on the chassis. Additionally, the proper welding parameters for the custom chassis design are investigated and are selected after deductive reasoning. The quality control of the weld joints is conducted by non-destructive methods (NDT) ensuring the required structural properties of the welds. A combination of the selected material, the specific type of the chassis, and the manufacturing processes lead to construction simplicity in a low manufacturing cost by using the existing laboratory equipment. Furthermore, the designing and manufacturing parameters lead to a stiff with a low centre of gravity, and the most lightweight chassis of the urban concept category at the Shell Eco Marathon race.
The increasing demand for energy efficient electric cars, in the automotive sector, entails the need for improvement of their structures, especially the chassis, because of its multifaceted role on the vehicle dynamic behaviour. The major criteria for the development of electric car chassis are the stiffness and strength enhancement subject to mass reduction as well as cost and time elimination. Towards this direction, this work indicates an integrated methodology of developing an electric car chassis considering the modeling and simulation concurrently. The chassis has been designed in compliance with the regulations of Shell Eco Marathon competition. This methodology is implemented both by the use of our chassis load calculator (CLC) model, which automatically calculates the total loads applied on the vehicle’s chassis and by the determination of a worst case stress scenario. Under this extreme stress scenario, the model’s output was evaluated for the chassis design and the FEA method was performed by the pre-processor ANSA and the solver Ansys. This method could be characterized as an accurate ultrafast and cost-efficient method.
Design optimization for Additive Manufacturing is demonstrated by the example of an industrial robot link. The part is first redesigned so that its shape details are compatible with the requirements of the Selective Laser Sintering technique. Subsequently, the SIMP method of topology optimization is utilized on commercially available software in order to obtain the optimum design of the part with restrictions applicable to Additive Manufacturing, namely member thickness, symmetry and avoidance of cavities and undercuts. Mass and strain energy are the design responses. The volume was constrained by a fraction of the initial mass. The desired minimization of maximum strain energy is expressed as an objective function. A 7% reduction in the mass of the part was achieved while its strength and stiffness remained unchanged. The process is supported by topology optimization software but it also involves some trial-and-error depending on the designer’s experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.