The development of the chassis for the hydrogen fuel cell powered car has been involved in the designing and manufacturing aspects, while taking into consideration the mass, strength, stiffness, centre of gravity (COG), and manufacturing cost requirements. Towards this direction, a chassis design is proposed employing a space frame structure and constructed by an aluminium alloy with great strength. The structural design has been derived through the lightweight engineering approaches in conjunction with the part consolidation, Design for Assembly (DFA) and Design for Manufacture methods. Moreover, it has been performed in compliance with the safety regulations of the Shell Eco Marathon racing competition. The material's principal characteristics are the great strength, the low mass, as well as the great workability, machinability, and weldability. Following the national and global environmental issues, the recyclable characteristics of the aluminium alloy are an extra asset. Furthermore, the existence of aluminium alloy manufacturers around the fabricating area provides low cost supply and fast delivery benefits. The integration of the fuel cell powered vehicle is obtained through the designing and the manufacturing processes of the chassis and the parts fitted on the chassis. The manufacturing procedures are described thoroughly; mainly consisting of the cutting and welding processes and the assembling of the parts that are fitted on the chassis. Additionally, the proper welding parameters for the custom chassis design are investigated and are selected after deductive reasoning. The quality control of the weld joints is conducted by non-destructive methods (NDT) ensuring the required structural properties of the welds. A combination of the selected material, the specific type of the chassis, and the manufacturing processes lead to construction simplicity in a low manufacturing cost by using the existing laboratory equipment. Furthermore, the designing and manufacturing parameters lead to a stiff with a low centre of gravity, and the most lightweight chassis of the urban concept category at the Shell Eco Marathon race.
The main aim of this research work is to analyse and improve an existing production line by applying the right lean manufacturing tools and techniques. In nowadays, most of the companies around the world use lean methodology at all levels within a company, but more especially at the production line. First of all, a literature review of lean manufacturing will be conducted. The starting point of the literature review is the history background, the definition and why lean is necessary in the world of manufacturing. The second part of the literature review is about the lean manufacturing tools and techniques. Then a lean assessment guide is defined and finally the implementation plan of lean. The second part of this research work is referring to a case study. The author visited an existing company where examined the production line from the raw materials to the shipping of finished goods. After detailed analysis, the recommended improvements have to be presented by suggesting an implementation plan. The final stage is to list all the benefits which the company will join after the implementation of the recommended improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.