The herbaceous plant standing crop differed significantly between seasons and vegetation types. It showed similar seasonal fluctuations in all habitat types although herbivore offtake rates differed considerably among habitats. Nutritive value of the pasture also differed between seasons, sometimes falling below minimum levels for herbivore maintenance. These conditions created considerable nutritive stress for the high‐density large herbivore community. This study indicates the need for active management of plant and animal communities to maintain species and habitat diversity.
There is a scarcity of laboratory and field-based results showing the movement of the diamondback moth (DBM) Plutella xylostella (L.) across a spatial scale. We studied the population growth of the diamondback moth (DBM) Plutella xylostella (L.) under six constant temperatures, to understand and predict population changes along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted to continuously model DBM development, mortality, longevity and oviposition. We compiled the best-fitted functions for each life stage to yield a phenology model, which we stochastically simulated to estimate the life table parameters. Three temperature-dependent indices (establishment, generation and activity) were derived from a logistic population growth model and then coupled to collected current (2013) and downscaled temperature data from AFRICLIM (2055) for geospatial mapping. To measure and predict the impacts of temperature change on the pest’s biology, we mapped the indices along the altitudinal gradients of Mt. Kilimanjaro (Tanzania) and Taita Hills (Kenya) and assessed the differences between 2013 and 2055 climate scenarios. The optimal temperatures for development of DBM were 32.5, 33.5 and 33°C for eggs, larvae and pupae, respectively. Mortality rates increased due to extreme temperatures to 53.3, 70.0 and 52.4% for egg, larvae and pupae, respectively. The net reproduction rate reached a peak of 87.4 female offspring/female/generation at 20°C. Spatial simulations indicated that survival and establishment of DBM increased with a decrease in temperature, from low to high altitude. However, we observed a higher number of DBM generations at low altitude. The model predicted DBM population growth reduction in the low and medium altitudes by 2055. At higher altitude, it predicted an increase in the level of suitability for establishment with a decrease in the number of generations per year. If climate change occurs as per the selected scenario, DBM infestation may reduce in the selected region. The study highlights the need to validate these predictions with other interacting factors such as cropping practices, host plants and natural enemies.
This study assesses the ecological pressure exerted by changing land use and tenure on the Kitenden wildlife corridor, a critical cross‐border link between the Amboseli and Kilimanjaro national parks. The implications on viability of the two high‐value protected areas and their respective dispersal areas are both negative and serious. The extent of land use change and its impacts were assessed through household and vegetation surveys, while wildlife abundance was measured using transect walks. Approximately 30% of the study area has shifted from community to private land ownership over the last two decades. Except for baboon and vervet monkey, most wildlife avoided the cultivated area. Vegetation composition on the noncultivated area has been greatly altered by intense wildlife and livestock use, where mean herbaceous vegetation cover differed significantly among range‐plant categories (F3, 524 = 29.015, p < 0.05). The frequency of increaser I (21.4%) differs greatly from that of decreaser and forbs, at 8.3% and 7.4%, respectively Tree recruitment was low, with a significant difference in mean density among age classes (F2, 110 = 3.663, p < 0.05). Only through land leasing agreements between landowners and conservation organisations, and a widely supported land use plan, can the spread of cultivation be controlled and complete cessation of wildlife movement be prevented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.