Huntington's disease (HD), a devastating neurodegenerative disorder, strongly affects the corticostriatal network, but the contribution of pre- and postsynaptic neurons in the first phases of disease is unclear due to difficulties performing early subcellular investigations in vivo. Here, we have developed an on-a-chip approach to reconstitute an HD corticostriatal network in vitro, using microfluidic devices compatible with subcellular resolution. We observed major defects in the different compartments of the corticostriatal circuit, from presynaptic dynamics to synaptic structure and transmission and to postsynaptic traffic and signaling, that correlate with altered global synchrony of the network. Importantly, the genetic status of the presynaptic compartment was necessary and sufficient to alter or restore the circuit. This highlights an important weight for the presynaptic compartment in HD that has to be considered for future therapies. This disease-on-a-chip microfluidic platform is thus a physiologically relevant in vitro system for investigating pathogenic mechanisms and for identifying drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.