Many higher plants produce economically important organic compounds such as oils, resins, tannins, natural rubber, gums, waxes, dyes, flavors and fragrances, pharmaceuticals, and pesticides. However, most species of higher plants have never been described, much less surveyed for chemical or biologically active constituents, and new sources of commercially valuable materials remain to be discovered. Advances in biotechnology, particularly methods for culturing plant cells and tissues, should provide new means for the commercial processing of even rare plants and the chemicals they produce. These new technologies will extend and enhance the usefulness of plants as renewable resources of valuable chemicals. In the future, biologically active plant-derived chemicals can be expected to play an increasingly significant role in the commercial development of new products for regulating plant growth and for insect and weed control.
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we determined a circulating miRNA, miR-2392, is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of patients positive for COVID-19, but not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.
Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1␣-and ptE1-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1 mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1 mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds.
A growing body of work addresses automated mining for biochemical information from digital repositories of scientific literature such as MEDLINE. Some of this work uses abstracts as the unit of text from which to extract facts. Other work uses sentences for this purpose, while still other work uses phrases. Here, we compare abstracts, sentences, and phrases in MEDLINE using the standard information retrieval performance measures of recall, precision, and effectiveness for the task of mining interactions among biochemical terms based on term cooccurrence. Results show statistically significant differences that can impact the choice of text unit, although no one of these three text units is unambiguously superior to the others.
Plastidic acetyl-coenzyme A (CoA) carboxylase (ACCase) catalyzes the first committed reaction of de novo fatty acid biosynthesis. This heteromeric enzyme is composed of one plastid-coded subunit (-carboxyltransferase) and three nuclear-coded subunits (biotin carboxy-carrier, biotin carboxylase, and ␣-carboxyltransferase). We report the primary structure of the Arabidopsis ␣-carboxyltransferase and -carboxyltransferase subunits deduced from nucleotide sequences of the respective genes and/or cDNA. Co-immunoprecipitation experiments confirm that the ␣-carboxyltransferase and -carboxyltransferase subunits are physically associated. The plant ␣-carboxyltransferases have gained a Cterminal domain relative to eubacteria, possibly via the evolutionary acquisition of a single exon. This C-terminal domain is divergent among plants and may have a structural function rather than being essential for catalysis. The four ACCase subunit mRNAs accumulate to the highest levels in tissues and cells that are actively synthesizing fatty acids, which are used either for membrane biogenesis in rapidly growing tissues or for oil accumulation in developing embryos. Development coordinately affects changes in the accumulation of the ACCase subunit mRNAs so that these four mRNAs maintain a constant molar stoichiometric ratio. These data indicate that the long-term, developmentally regulated expression of the heteromeric ACCase is in part controlled by a mechanism(s) that coordinately affects the steady-state concentrations of each subunit mRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.