Carbon nanotubes (CNTs) are fibrous carbon-based nanomaterials with a potential to cause carcinogenesis in humans. Alterations in DNA methylation on cytosine-phosphate-guanidine (CpG) sites are potential markers of exposure-induced carcinogenesis. This study examined cytotoxicity, genotoxicity and DNA methylation alterations on human monocytic cells (THP-1) after incubation with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). Higher cytotoxicity and genotoxicity were observed after incubation with SWCNTs than incubation with MWCNTs. At the selected concentrations (25 and 100 µg/ml), DNA methylation alterations were studied. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to assess global DNA methylation, and Illumina 450K microarrays were used to assess methylation of single CpG sites. Next, we assessed gene promoter-specific methylation levels. We observed no global methylation or hydroxymethylation alterations, but on gene-specific level, distinct clustering of CNT-treated samples were noted. Collectively, CNTs induced gene promoter-specific altered methylation and those 1127 different genes were identified to be hypomethylated. Differentially methylated genes were involved in several signalling cascade pathways, vascular endothelial growth factor and platelet activation pathways. Moreover, possible contribution of the epigenetic alterations to monocyte differentiation and mixed M1/M2 macrophage polarisation were discussed.
BackgroundSubtle DNA methylation alterations mediated by carbon nanotubes (CNTs) exposure might contribute to pathogenesis and disease susceptibility. It is known that both multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) interact with nucleus. Such, nuclear-CNT interaction may affect the DNA methylation effects.In order to understand the epigenetic toxicity, in particular DNA methylation alterations, of SWCNTs and short MWCNTs, we performed global/genome-wide, gene-specific DNA methylation and RNA-expression analyses after exposing human bronchial epithelial cells (16HBE14o- cell line). In addition, the presence of CNTs on/in the cell nucleus was evaluated in a label-free way using femtosecond pulsed laser microscopy.ResultsGenerally, a higher number of SWCNTs, compared to MWCNTs, was deposited at both the cellular and nuclear level after exposure. Nonetheless, both CNT types were in physical contact with the nuclei. While particle type dependency was noticed for the identified genome-wide and gene-specific alterations, no global DNA methylation alteration on 5-methylcytosine (5-mC) sites was observed for both CNTs. After exposure to MWCNTs, 2398 genes were hypomethylated (at gene promoters), and after exposure to SWCNTs, 589 CpG sites (located on 501 genes) were either hypo- (N = 493 CpG sites) or hypermethylated (N = 96 CpG sites).Cells exposed to MWCNTs exhibited a better correlation between gene promoter methylation and gene expression alterations. Differentially methylated and expressed genes induced changes (MWCNTs > SWCNTs) at different cellular pathways, such as p53 signalling, DNA damage repair and cell cycle. On the other hand, SWCNT exposure showed hypermethylation on functionally important genes, such as SKI proto-oncogene (SKI), glutathione S-transferase pi 1 (GTSP1) and shroom family member 2 (SHROOM2) and neurofibromatosis type I (NF1), which the latter is both hypermethylated and downregulated.ConclusionAfter exposure to both types of CNTs, epigenetic alterations may contribute to toxic or repair response. Moreover, our results suggest that the observed differences in the epigenetic response depend on particle type and differential CNT-nucleus interactions.Electronic supplementary materialThe online version of this article (10.1186/s12989-018-0244-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.