ABSTRACT-Two-component theories of intellectual development over the life span postulate that fluid abilities develop earlier during child development and decline earlier during aging than crystallized abilities do, and that fluid abilities support or constrain the acquisition and expression of crystallized abilities. Thus, maturation and senescence compress the structure of intelligence by imposing age-specific constraints upon its constituent processes. Hence, the couplings among different intellectual abilities and cognitive processes are expected to be strong in childhood and old age. Findings from a populationbased study of 291 individuals aged 6 to 89 years support these predictions. Furthermore, processing robustness, a frequently overlooked aspect of processing, predicted fluid intelligence beyond processing speed in old age but not in childhood, suggesting that the causes of more compressed functional organization of intelligence differ between maturation and senescence. Research on developmental changes in functional brain circuitry may profit from explicitly recognizing transformations in the organization of intellectual abilities and their underlying cognitive processes across the life span.Spearman (1904) discovered the ubiquitous positive intercorrelations among intelligence tests. Since his work, most researchers in the field of intelligence have viewed the structure of intelligence as static (see Carroll, 1993, andSternberg, 1994, for overviews), overlooking possible developmental transformations in the organization of intellectual abilities and their underlying information processing and neurobiological mechanisms.
General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16–102) and find 148 genome-wide significant independent loci (P < 5 × 10−8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
The brain neuronal systems defined by the neurotransmitter dopamine (DA) have since long a recognized role in the regulation of motor functions. More recently, converging evidence from patient studies, animal research, pharmacological intervention, and molecular genetics indicates that DA is critically implicated also in higher-order cognitive functioning. Many cognitive functions and multiple markers of striatal and extrastriatal DA systems decline across adulthood and aging. Research examining the correlative triad among adult age, DA, and cognition has found strong support for the view that age-related DA losses are associated with age-related cognitive deficits. Future research strategies for examining the DA-cognitive aging link include assessing (a) the generality/specificity of the effects; (b) the relationship between neuromodulation and functional brain activation; and (c) the release of DA during actual task performance. r
Postural control in everyday life is generally accompanied by posture-unrelated cognitive activity. Thus, mild forms of dual-tasking postural control are the norm rather than the exception. Based on this consideration and available evidence, we propose and empirically examined, in young and old adults, a non-monotonic, U-shaped relation between the efficacy of postural control and concurrent cognitive demands that reflect opposing trends of the effects of attention focus and attentional resource competition. When instructed to perform an easy cognitive task that presumably shifted the focus of attention away from posture control, the center of body pressure (COP) excursions decreased both in young and older adults relative to a single-task baseline where the focus of attention was explicitly directed towards the postural control task itself. However, when performing more demanding cognitive tasks, older adults showed increased COP displacements, in line with the predicted Ushape function, whereas young adults did not. We outline mechanisms linking postural control to cognitive demand and suggest routes for future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.