Migration distances of shorebird species correlate with life history strategies. To assess age‐specific migratory preparation and adult wing‐molt strategies, we studied Western Sandpipers (Calidris mauri) and Semipalmated Sandpipers (C. pusilla) with different migration routes at the Paracas National Reserve in Perú, one of the most austral non‐breeding areas for these sandpipers, from 2012 to 2015. Western Sandpipers breed near the Bering Sea, ~11,000 km from Paracas. Semipalmated Sandpiper populations at Paracas are a mixture of short‐billed birds from western Arctic breeding sites, plus long‐billed birds from eastern sites, ~8000 km distant. Adults of both species arrive in October with primary feathers already partially renewed so wing molt starts at sites further north. Semipalmated Sandpipers with longer bills completed wing molt later than shorter billed birds. Adults of both species prepared for migration in February and March. No juvenile Western Sandpipers prepared for migration, confirming the “slow” over‐summering life history strategy of more southerly non‐breeding populations. Juvenile Semipalmated Sandpipers showed bimodality in strategies. Most showed no migratory preparation, but, during three non‐breeding periods, from 27% to 31% fattened, molted, and partially replaced outer primaries during the pre‐migratory period. Juveniles with longer culmens were heavier and tended to have more alternate plumage. Juveniles that were partially molting primaries had longer culmens and more alternate plumage. Juvenile Semipalmated Sandpipers from eastern‐breeding populations thus have a higher propensity for a fast life history strategy, and western birds a slow one, at this non‐breeding site in Peru. Western‐breeding Semipalmated Sandpiper populations thus resemble Western Sandpipers, suggesting a common, possibly distance‐related, effect on life history strategy.
Background Age at maturity and the timing of first breeding are important life history traits. Most small shorebird species mature and breed as ‘yearlings’, but have lower reproductive success than adults. In some species, yearlings may defer northward migration and remain in non-breeding regions (‘oversummering’) until they reach 2 years of age. Some adults also oversummer. Oversummering would be favoured by natural selection if survival were as a result raised sufficiently to compensate for the missed breeding opportunity. Several thousand Semipalmated Sandpipers (Calidris pusilla) spend the non-breeding period at Paracas, Perú, including individuals with long bills (likely from eastern Arctic breeding populations ~ 8000 km distant) and short bills (likely from western Arctic breeding populations, up to 11,000 km distant), with short-billed birds more likely to oversummer. We tested the prediction that oversummering birds have higher survival than migrants, and that the magnitude of this higher survival for oversummering birds is enough to compensate for their lost breeding season. Methods We used a Multi-State Mark-Recapture model based on 5 years of encounter data (n = 1963 marked birds, and 3229 resightings) obtained year-round at Paracas, Perú, to estimate seasonal (i.e. breeding and non-breeding) survivorship for migrant and oversummering birds. We calculated the magnitude of the oversummering survival advantage required to compensate, for both yearlings and adults, based on published measures of annual survival and reproductive success. Using bill length as a proxy for migration distance, we investigated whether migratory survival is distance-dependent. Results We estimate that 28% of yearlings and 19% of adults oversummer. Survival is higher for oversummering birds than for migrants, and the oversummering survival advantage is greater for adults (0.215) than for yearlings (0.140). The theoretical thresholds predicted by the size of the missed reproductive opportunity are 0.240 for adults and 0.134 for yearlings. Migratory survival decreases and the oversummering rate increases with migration distance, as assessed by culmen length. Conclusions Our results support the life history hypothesis that oversummering raises survival enough to compensate for the loss of a breeding opportunity. Greater migration distance lowers survival and increases the probability of oversummering.
Two recent and independent studies both estimate substantially lower survival rates of semipalmated Calidris pusilla than of western C. mauri sandpipers, consistent with the pronounced multi-decade population decline of the former. Migratory danger has climbed steadily for both these long-distance migrants since the mid-1970s as the number of peregrine falcons Falco peregrinus increased. These predators are present on the Pacific flyway as co-migrants and are a natural (though now more abundant) feature of western sandpiper southbound migrations. Adjustments to migratory speed, timing and routing enable them to mitigate the danger. On the Atlantic flyway peregrines were introduced and breeding populations established in the 1980s at key staging areas, creating a novel hazard for southbound semipalmated sandpipers. Adjustments to migratory timing and speed do not aid in eluding such resident predators, and alternative routes are not available. Semipalmated sandpipers as a consequence have few effective defenses to counter this heightened danger, and we hypothesize that migratory mortality has increased, making over-summering (i.e. skipping a breeding season) more advantageous. The risk effects (i.e. the consequent reduction in population growth rate) so generated are substantial, and may be able to account for a large portion of the population decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.