Through proteomic identification of sumoylated proteins, combined with detailed molecular and cellular analyses of conditional and null smt3/smt3 mutants, the small ubiquitin-like modifier, SUMO, is shown to play key roles in cellular growth and stress adaptation of the major fungal pathogen Candida albicans.
Post-translational modifications of proteins play key roles in eukaryotic growth, differentiation and environmental adaptation. In model systems the ubiquitination of specific proteins contributes to the control of cell cycle progression, stress adaptation and metabolic reprogramming. We have combined molecular, cellular and proteomic approaches to examine the roles of ubiquitination in Candida albicans, because little is known about ubiquitination in this major fungal pathogen of humans. Independent null (ubi4/ubi4) and conditional (MET3p-UBI4/ubi4) mutations were constructed at the C. albicans polyubiquitin-encoding locus. These mutants displayed morphological and cell cycle defects, as well as sensitivity to thermal, oxidative and cell wall stresses. Furthermore, ubi4/ubi4 cells rapidly lost viability under starvation conditions. Consistent with these phenotypes, proteins with roles in stress responses (Gnd1, Pst2, Ssb1), metabolism (Acs2, Eno1, Fba1, Gpd2, Pdx3, Pgk1, Tkl1) and ubiquitination (Ubi4, Ubi3, Pre1, Pre3, Rpt5) were among the ubiquitination targets we identified, further indicating that ubiquitination plays key roles in growth, stress responses and metabolic adaptation in C. albicans. Clearly ubiquitination plays key roles in the regulation of fundamental cellular processes that underpin the pathogenicity of this medically important fungus. This was confirmed by the observation that the virulence of C. albicans ubi4/ubi4 cells is significantly attenuated.
The proteins of nontypable and type b Haemophilus influenzae isolates were characterised using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Coomassie Brilliant. Blue R-250 was used for protein detection. Two hundred and twenty eight proteins were resolved from whole cell lysates prepared from a standard nontypable H. influenzae strain (designated HI-64443) when isoelectric focusing was used for the first-dimensional separation of 2-D PAGE. When nonequilibrium pH gel electrophoresis (NEPHGE) was used to separate basic proteins in the first dimension, 50 proteins were detected for HI-64443; 20 of the basic proteins detected were considered to be unique for this separation protocol. The apparent molecular weights and isoelectric points were determined for 82 of the proteins resolved for HI-64443. The variation of the proteins from the standard bacterial strain (HI-64443) was determined for nontypable H. influenzae isolates. On the basis of their electrophoretic mobilities, 17.5% of the proteins of HI-64443 were shared by four other nontypable H. influenzae strains analysed. These data identified both conserved and variable proteins among the nontypable H. influenzae isolates analysed. The results obtained indicated that 2-D PAGE was able to discriminate nontypable H. influenzae into population clones identified by other procedures. The 2-D protein profiles obtained for type b H. influenzae strains were similar to those obtained for nontypable H. influenzae strains. The extent of the protein variation observed between type b and nontypable H. influenzae strain was similar to that observed among nontypable strains alone. These data are discussed in relation to the application of 2-D PAGE as a tool for studies on bacterial epidemiology and for the analysis of the genome structure and gene expression of Haemophilus influenzae.
Members of the Haemophilus genus are responsible for various human infections including respiratory infections and meningitis. The complete nucleotide sequence of the Rd strain of Haemophilus influenzae has been reported and represents a valuable resource to investigate gene expression within this bacterial group. We described previously the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to characterise the proteins of Haemophilus influenzae (Cash et al., Electrophoresis 1995, 16, 135-148). We have extended these data with comparative studies of the proteins from other members of the Haemophilus genus (specifically H. parainfluenzae, H. haemolyticus and H. parahaemolyticus) to identify homologous proteins and, by extension, the genes encoding them, among these bacteria. The proteins extracted from each of these bacterial isolates were compared by coelectrophoresis to the 2-D protein profile of the reference nontypable strain of H. influenzae (HI-64443) used as the basis for the 2-D protein database. A composite reference 2-D protein profile of HI-64443 was derived from three independent analyses of the soluble bacterial proteins. Between 21% and 37% of the HI-64443 proteins from the reference 2-D protein profile comigrated with proteins in the other isolates from the Haemophilus genus. This compared with 62% and 64% comigration when HI-64443 was compared with the Eagan and Rd strains of H. influenzae, respectively. The 2-D protein profile of the Rd strain of H. influenzae was compared to that of HI-64443 by coelectrophoresis; 64% of the proteins detected for the Rd strain comigrated with proteins found for HI-64443 when analysed in parallel. The capacity of 2-D PAGE to investigate global interactions of gene expression was applied to the analysis of superoxide dismutase (SOD) expression in H. influenzae strain Eagan. A "knock-out" mutant in the sodA gene which encodes [Mn]-SOD was characterised with respect to protein synthesis compared to the parental isolate. From these analyses, the primary product of sodA was provisionally identified as a protein with a molecular mass of 25500 Da and an estimated pI of 6.55. Quantitative changes in the expression of two other proteins in the SOD mutant were detected by comparison with the parental isolate. These data are discussed in relation to the development of a 2-D protein database for H. influenzae and related bacteria to investigate genome homologies and gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.