Both the generation and the analysis of proteome data are becoming increasingly widespread, and the field of proteomics is moving incrementally toward high-throughput approaches. Techniques are also increasing in complexity as the relevant technologies evolve. A standard representation of both the methods used and the data generated in proteomics experiments, analogous to that of the MIAME (minimum information about a microarray experiment) guidelines for transcriptomics, and the associated MAGE (microarray gene expression) object model and XML (extensible markup language) implementation, has yet to emerge. This hinders the handling, exchange, and dissemination of proteomics data. Here, we present a UML (unified modeling language) approach to proteomics experimental data, describe XML and SQL (structured query language) implementations of that model, and discuss capture, storage, and dissemination strategies. These make explicit what data might be most usefully captured about proteomics experiments and provide complementary routes toward the implementation of a proteome repository.
The pathogenesis of endometriosis includes the proliferation of heterogeneous endometrial cells and their invasion into ectopic sites within the peritoneal cavity. This may be due to abnormalities of the eutopic endometrium itself, predisposing the cells to survive and implant ectopically. We investigated the applicability of 2-DE gels and peptide mass mapping to identify candidate endometrial proteins with a role in endometriosis. Despite the heterogeneous nature of endometrium, our results show that combining the analysis of 2-DE gels and peptide mass mapping yields consistent data. We identified dysregulated proteins in women with endometriosis which included: (i) molecular chaperones including heat shock protein 90 and annexin A2, (ii) proteins involved in cellular redox state, such as peroxiredoxin 2, (iii) proteins involved in protein and DNA formation/breakdown, including ribonucleoside-diphosphate reductase, prohibitin and prolyl 4-hydroxylase, and (iv) secreted proteins, such as apolipoprotein A1. These proteins have functions which suggest that they could play a role in the pathogenesis of endometriosis. This study demonstrated that 2-DE gel analysis and mass spectroscopic protein identification are suitable for the identification of proteins with candidate associations with endometriosis. These techniques should be used on a larger scale to identify endometriosis-related proteins, thus improving the understanding of this complex disease.
The global analysis of cellular proteins has recently been termed proteomics and is a key area of research that is developing in the post-genome era. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing, and bio-informatics to resolve comprehensively, to quantify, and to characterize proteins. The application of proteomics provides major opportunities to elucidate disease mechanisms and to identify new diagnostic markers and therapeutic targets. This review aims to explain briefly the background to proteomics and then to outline proteomic techniques. Applications to the study of human disease conditions ranging from cancer to infectious diseases are reviewed. Finally, possible future advances are briefly considered, especially those which may lead to faster sample throughput and increased sensitivity for the detection of individual proteins.
Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome.
Erythromycin-resistant isolates of Streptococcus pneumoniae from blood cultures and noninvasive sites were studied over a 3-year period. The prevalence of erythromycin resistance was 11.9% (19 of 160) in blood culture isolates but 4.2% (60 of 1,435) in noninvasive-site isolates. Sixty-two of the 79 resistant isolates were available for study. The M phenotype was responsible for 76% (47 of 62) of resistance, largely due to a serotype 14 clone, characterized by multilocus sequence typing as ST9, which accounted for 79% (37 of 47) of M phenotype resistance. The ST9 clone was 4.8 times more common in blood than in noninvasive sites. All M phenotype isolates were PCR positive for mef(A), but sequencing revealed that the ST9 clone possessed the mef(A) sequence commonly associated with Streptococcus pyogenes. All M phenotype isolates with this mef(A) sequence also had sequences consistent with the presence of the Tn1207.1 genetic element inserted in the celB gene. In contrast, isolates with the mef(E) sequence normally associated with S. pneumoniae contained sequences consistent with the presence of the mega insertion element. All MLS B isolates carried erm(B), and two isolates carried both erm(B) and mef(E). Fourteen of the 15 MLS B isolates were tetracycline resistant and contained tet(M). However, six M phenotype isolates of serotypes 19 (two isolates) and 23 (four isolates) were also tetracycline resistant and contained tet(M). MICs for isolates with the mef(A) sequence were significantly higher than MICs for isolates with the mef(E) sequence (P < 0.001). Thus, the ST9 clone of S. pneumoniae is a significant cause of invasive pneumococcal disease in northeast Scotland and is the single most important contributor to M phenotype erythromycin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.