Symptoms of visuospatial neglect occur frequently after unilateral brain damage. Neglect hampers rehabilitation progress and is associated with reduced quality of life. However, existing treatment methods show limited efficacy. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique, which can be used to increase or decrease brain excitability. Its combination with conventional neglect therapy may enhance treatment efficacy. A 72-year-old male with a subacute ischemic stroke of the right posterior cerebral artery suffering from visuospatial neglect, hemianopia, and hemiparesis was treated with biparietal tDCS and cognitive neglect therapy in a double-blind, sham-controlled single-case study. Four weeks of daily treatment sessions (5 days per week, 30 min) were started 26 days post-stroke. During week 1 and 4 the patient received conventional neglect therapy, during week 2, conventional neglect therapy was combined once with sham and once with real biparietal tDCS. Week 3 consisted of daily sessions of real biparietal tDCS (1 mA, 20 min) combined with neglect therapy. Outcome measures were assessed before, immediately after, as well as 1 week and 3 months after the end of treatment. They included subtests of the Test for Attentional Performance (TAP): covert attention (main outcome), alertness, visual field; the Neglect-Test (NET): line bisection, cancelation, copying; and activities of daily living (ADL). After real stimulation, covert attention allocation toward left-sided invalid stimuli was significantly improved, and line bisection and copying improved qualitatively as compared to sham stimulation. ADL were only improved at the 3-month follow-up. This single-case study demonstrates for the first time that combined application of tDCS and cognitive training may enhance training-induced improvements in measures of visuospatial neglect and is applicable in a clinical context.
Huntington disease (HD) is a relentlessly progressive neurodegenerative disorder with symptoms across a wide range of neurological domains, including cognitive and motor dysfunction. There is still no causative treatment for HD but environmental factors such as passive lifestyle may modulate disease onset and progression. In humans, multidisciplinary rehabilitation has a positive impact on cognitive functions. However, a specific role for exercise as a component of an environmental enrichment effect has been difficult to demonstrate. We aimed at investigating whether endurance training (ET) stabilizes the progression of motor and cognitive dysfunction and ameliorates cardiovascular function in HD patients. Twelve male HD patients (mean ± SD, 54.8 ± 7.1 years) and twelve male controls (49.1 ± 6.8 years) completed 26 weeks of endurance training. Before and after the training intervention, clinical assessments, exercise physiological tests, and a body composition measurement were conducted and a muscle biopsy was taken from M. vastus lateralis. To examine the natural course of the disease, HD patients were additionally assessed 6 months prior to ET. During the ET period, there was a motor deficit stabilization as indicated by the Unified Huntington's Disease Rating Scale motor section score in HD patients (baseline: 18.6 ± 9.2, pre-training: 26.0 ± 13.7, post-training: 26.8 ± 16.4). Peak oxygen uptake ([Formula: see text]) significantly increased in HD patients (∆[Formula: see text] = +0.33 ± 0.28 l) and controls (∆[Formula: see text] = +0.29 ± 0.41 l). No adverse effects of the training intervention were reported. Our results confirm that HD patients are amenable to a specific exercise-induced therapeutic strategy indicated by an increased cardiovascular function and a stabilization of motor function.
Visuospatial neglect constitutes a supramodal cognitive deficit characterized by reduction or loss of spatial awareness for the contralesional space. It occurs in over 40% of right- and 20% of left-brain-lesioned stroke patients with lesions located mostly in parietal, frontal and subcortical brain areas. Visuospatial neglect is a multifaceted syndrome - symptoms can be divided into sensory, motor and representational neglect - and therefore requires an individually adapted diagnostic and therapeutic approach. Several models try to explain the origins of visuospatial neglect, of which the “interhemispheric rivalry model” is strongly supported by animal and human research. This model proposes that allocation of spatial attention is balanced by transcallosal inhibition and both hemispheres compete to direct attention to the contralateral hemi-space. Accordingly, a brain lesion causes an interhemispheric imbalance, which may be re-installed by activation of lesioned, or deactivation of unlesioned (over-activated) brain areas through noninvasive brain stimulation. Research in larger patient samples is needed to confirm whether noninvasive brain stimulation can improve long-term outcomes and whether these also affect activities of daily living and discharge destination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.