In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleepdeprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance.H uman sleep is associated with a profound modification of consciousness and the emergence of distinct sleep oscillations. In the early stages of non-rapid eye movement (NREM) sleep, electroencephalographic recordings show characteristic spindle oscillations. In humans, spindles consist of waxing-and-waning 11-to 15-Hz oscillations, lasting 0.5-3 sec. At the cellular level, spindles are associated with substantial neuronal activity. Spindles arise from cyclic inhibition of thalamo-cortical (TC) neurons by reticular thalamic neurons. Postinihibitory rebound spike bursts in TC cells entrain cortical populations in spindle oscillations (1). These neuronal mechanisms, which involve large TC populations, are thought to shape the processing of information during light NREM sleep and participate in the alteration of consciousness that characterizes this stage of sleep.Little is known on the cerebral correlates of human spindles. Early positron emission tomography studies reported a negative relationship between thalamic cerebral blood flow and the power spectrum in the spindle frequency band (2). However, the low temporal resolution of positron emission tomography did not allow for a fine-grained characterization of the cerebral correlates of human spindles. In addition, two kinds of spindles are described in humans. Slow spindles (Ͻ13 Hz) predominate over frontal, whereas fast spindles (Ͼ13 Hz) prevail over centro-parietal areas. The difference in spindle scalp topography is also reflected by profound functional differences. These two spindling activities differ by their circadian and homeostatic regul...
Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior.
In perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli, a phenomenon that remains only partially understood. Here, by means of thulium-yttrium/aluminum-garnet laser and event-related functional MRI, we tested whether variability in perception of identical stimuli relates to differences in prestimulus, baseline brain activity. Results indicate a positive relationship between conscious perception of low-intensity somatosensory stimuli and immediately preceding levels of baseline activity in medial thalamus and the lateral frontoparietal network, respectively, which are thought to relate to vigilance and ''external monitoring.'' Conversely, there was a negative correlation between subsequent reporting of conscious perception and baseline activity in a set of regions encompassing posterior cingulate/ precuneus and temporoparietal cortices, possibly relating to introspection and self-oriented processes. At nociceptive levels of stimulation, pain-intensity ratings positively correlated with baseline fluctuations in anterior cingulate cortex in an area known to be involved in the affective dimension of pain. These results suggest that baseline brain-activity fluctuations may profoundly modify our conscious perception of the external world.consciousness ͉ functional MRI ͉ pain I n perceptual experiments, within-individual fluctuations in perception are observed across multiple presentations of the same stimuli (1). In recent years, trial-to-trial variability in the magnitude of event-related blood oxygenation level-dependent (BOLD) responses has also been shown to be relevant to human perception and behavior (2). For example, the magnitude of the evoked BOLD response in the frontoparietal network relates to conscious (visual) perception (3) and to pain intensity perception in the posterior part of anterior cingulate cortex (pACC) (4). In many cases, this intertrial variability cannot be attributed to the variability in stimuli (5-7). Despite its demonstrated relevance for human behavior, the sources of these event-related BOLD responses and the related perception variability are only partially understood (2, 8).The aim of our study was to test whether spatially specific differences in prestimulus baseline brain activity could predict subsequent differences in subjective perception of external stimuli. In the present experiment, we investigated somatosensory and pain perception. It is now increasingly accepted that perceptual awareness seems to be the result of the interaction between specialized sensory cortices and a higher-order frontoparietal network (9). However, the relative role of specialized sensory cortices (10, 11) vs. higher level areas (9, 12) in the genesis of conscious perception remains controversial. On the other hand, a set of particular brain areas, the so-called ''pain neuromatrix,'' has been involved in pain intensity perception (4, 13). These areas were thus candidates for the possible location of prestimulus baseline mo...
Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates and , proton density and magnetisation transfer saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
The medial prefrontal cortex (MPFC) appears to play a prominent role in two fundamental aspects of social cognition, that is, self-referential processing and perspective taking. However, it is currently unclear whether the same or different regions of the MPFC mediate these two interdependent processes. This functional magnetic resonance imaging study sought to clarify the issue by manipulating both dimensions in a factorial design. Participants judged the extent to which trait adjectives described their own personality (e.g., "Are you sociable?") or the personality of a close friend (e.g., "Is Caroline sociable?") and were also asked to put themselves in the place of their friend (i.e., to take a third-person perspective) and estimate how this person would judge the adjectives, with the target of the judgments again being either the self (e.g., "According to Caroline, are you sociable?") or the other person (e.g., "According to Caroline, is she sociable?"). We found that self-referential processing (i.e., judgments targeting the self vs. the other person) yielded activation in the ventral and dorsal anterior MPFC, whereas perspective taking (i.e., adopting the other person's perspective, rather than one's own, when making judgments) resulted in activation in the posterior dorsal MPFC; the interaction between the two dimensions yielded activation in the left dorsal MPFC. These findings show that self-referential processing and perspective taking recruit distinct regions of the MPFC and suggest that the left dorsal MPFC may be involved in decoupling one's own from other people's perspectives on the self.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.