Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2 (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation.
Complexes with purely pyridine-based macrocycles are rarely studied in photo(electro)catalysis. We synthesized and investigated macrocycles, in which two 2,2'-bipyridine (bpy) units are linked twice by two cyano-methylene groups, to yield the basic tetradentate, bipyridine based ligand framework (pyr). The protons in the bridges were substituted to obtain derivatives with one (pyr-alk) or two (pyr-alk2) alkyl-chains, respectively. We present the crystal structures of the mono-pentylated and the cis-dibutylated ligands. The corresponding Co(II) complexes [Co(II)(OH2)2(pyr)], [Co(II)Br(HOMe)(pyr-bu)], [Co(II)Br2(cis-pyr-bu2)] and [Co(II)Br2(trans-pyr-bu2)] were prepared, their physico-chemical properties elucidated and their crystal structures determined. X-ray analyses revealed for the latter three complexes distorted octahedral coordination and a fairly planar {Co(II)(pyr)} macrocyclic scaffold. The axial bromides in [Co(II)Br(HOMe)(pyr-bu)], [Co(II)Br2(cis-pyr-bu2)] and [Co(II)Br2(trans-pyr-bu2)] are weakly bound and dissociate upon dissolution in water. While the alkylated complexes are paramagnetic and feature Co(II) d(7) high spin configurations, the unsubstituted complex [Co(II)(OH2)2(pyr)] displays a rare Co(II) low spin configuration. The electronic ground states of [Co(II)Br2(cis-pyr-bu2)] and [Co(II)Br2(trans-pyr-bu2)] are similar, as evident from the almost identical UV/vis spectra. Electrochemical analyses show redox-non-innocent ligand frameworks. All complexes are highly robust and efficient H(+) reducing catalysts. In the presence of [Ru(bpy)3]Cl2 as a photosensitizer and TCEP/NaHasc as a sacrificial electron donor and shuttle, turnover numbers (TONs, H2/Co) up to 22 000 were achieved.
The metalation of the tetradentate molecule pyrphyrin by copper substrate atoms on a Cu(111) surface is studied. Pyrphyrin, in contrast to porphyrin, consists of four fused pyridine groups instead of pyrrol groups. Using thermal desorption spectroscopy (TDS) and N 1s X‐ray photoelectron spectroscopy (XPS), we show that metalation of the monolayer of pyrphyrin with Cu atoms from the Cu(111) surface occurs at 377 K. The formation of an extended two‐dimensional (2D) network is observed with scanning tunneling microscopy (STM). A honeycomb‐like lattice of metalated pyrphyrin molecules is formed by intermolecular connection via the two cyano groups at the periphery of pyrphyrin as well as Cu adatoms. Dehydrogenation at the periphery of the molecule is observed during annealing at 520 K. The surface‐adsorbed metal‐pyrphyrin has the potential to serve as a molecular catalyst.
The enzymes of the mevalonate‐independent biosynthetic pathway to isoprenoids are attractive targets for the development of new drug candidates, in particular against malaria and tuberculosis, because they are present in major human pathogens but not in humans. Herein, the structure‐based design, synthesis, and biological evaluation of a series of inhibitors featuring a central imidazole or benzimidazole scaffold for the kinase IspE from E. coli, a model for the corresponding malarial enzyme, are described. Optimization of the binding preferences of the hydrophobic sub‐pocket at the substrate‐binding site allowed IC50 values in the lower micromolar range to be reached. Structure–activity relationship studies using a 1,2‐disubstituted imidazole central core revealed that alicyclic moieties fit the sub‐pocket better than acyclic aliphatic and aromatic residues. The phosphate‐binding region in the ATP‐binding site of IspE, a neutral glycine‐rich loop, was addressed for the first time by an additional vector attached to the central core. Polar functional groups, such as trifluoromethyl or nitriles, were introduced to undergo orthogonal dipolar interactions with the amide groups in the loop. Alternatively, small hydrogen‐bond‐accepting heterocyclic residues, capable of binding to the convergent NH groups in the loop, were explored. The biological data showed slightly improved inhibitory potency in some cases and confirmed the challenges in addressing, with gain in binding affinity, the highly water‐exposed sections of enzyme active sites, such as the glycine‐rich loop of IspE.
Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H 2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products.T his approach allowed aC QD-molecular nickel bis(diphosphine) photocatalyst system to reach ab enchmark lifetime of more than 5daysa nd ar ecordt urnover number of 1094 AE 61 mol H2 (mol Ni ) À1 for ad efined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.