Adefovir dipivoxil is safe for the treatment of chronic hepatitis B in patients with varying degrees of renal dysfunction and lamivudine-resistant HBV and results in biochemical and virological efficacy similar to that reported in the general population.
BackgroundThe lactase persistent (LP) or lactase non-persistent (LNP) state in European adults is genetically determined by a single nucleotide polymorphism (SNP) located 13.9 kb upstream of the lactase (LCT) gene, known as LCT C>T−13910 (rs4988235). The LNP condition leads to an inability to digest the milk sugar lactose leading to gastrointestinal symptoms and can affect nutrient and calcium intake in certain populations.ObjectivesThe authors studied a group of 51 Chilean patients to assess whether this SNP influences the LP/LNP state in this population, and determined the prevalence of LCT C>T−13910 genotypes in a representative sample of 216 Hispanics and 43 Amerindians with correlation to digestive symptoms.DesignCase–control study done in Chilean patients with clinical suspicion of LNP that were assessed using clinical survey, hydrogen breath test (HBT) and SNP genotyping. The population sample of Hispanics and Amerindians was assessed by clinical survey and SNP genotyping.ResultsOf the 51 patients with clinical suspicion of LNP, 29 were HBT-positive. The CC genotype (LNP) was present in 89.7% of the patients with positive HBT and in only 4.7% of those with negative HBT. The prevalence of the CC genotype was 56.9% in the Hispanic population and 88.3% in Amerindians, and was associated with a higher self-reported clinical intolerance to ingestion of dairy products.ConclusionThe LP/LNP state is determined by the LCT C>T−13910 variant in Chileans. This variant predicts digestive symptoms associated with the ingestion of lactose and is a good tool for the diagnosis of primary adult hypolactasia. The LCT T−13910 allele is rare in the Amerindian population and is suggestive of European ancestry in this contemporary population.
The study of cyanobacteria isolated from hypersaline environments is of interest because of their metabolic and ecophysiologic versatility in adapting to extreme conditions of salinity, temperature, irradiance and nutrient availability. The effect of salinity at 0‰, 35‰, 70‰ and 100‰ on the growth, dry weight, and pigment, protein, carbohydrate and lipid production of the cyanobacterium Synechococcus sp. was determined. Bioassays were kept in ALGAL medium equivalent to 8 mM NaNO3, constant aeration, 12:12 h photoperiod, 28 ± 2ºC and 156 µmol quanta m–2 s–1 of irradiance. The cyanobacterium was able to grow under all salinities tested. Cell density was optimized at 35‰, with 607.64 ± 14.35 cells mL–1. The highest values of dry weight (3.87 ± 0.03 ng cell–1), chlorophyll a (41.86 ± 0.39 fg cell–1), ß-carotene (9.03 ± 0.15 fg cell–1), zeaxanthin (9.74 ± 0.24 fg cell–1), proteins (1.95 ± 0.05 pg cell–1) and carbohydrates (1.80 ± 0.05 pg cell–1) were obtained at 100‰; however, the highest lipid content (0.45 ± 0.04 pg cell–1) was reached at 0‰. This Synechococcus strain shows halotolerance and the capacity to modulate the production of enriched biomass with pigments, proteins, carbohydrates and lipids in terms of salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.