Noroviruses belong to a genus of genetically diverse viruses within the family Caliciviridae and cause acute gastroenteritis in humans and animals. They are subdivided into genogroups, each of which further segregates into genotypes. Until recently, a new genotype was based on a defined pairwise distance cutoff of complete VP1 sequences, but with the increasing number of available norovirus sequences, this cutoff is no longer accurate, and sequences in the public database have been misclassified. In this paper, we demonstrate that the pairwise distance cutoff method can no longer be used and outline a phylogenetic approach to classify noroviruses. Further-more, we propose a dual nomenclature using both ORF1 and VP1 sequences, as recombination is common and recognizing recombinant viruses may be relevant. With the continuing emergence of new norovirus lineages, we propose to coordinate nomenclature of new norovirus genotypes through an international norovirus working group.
In addition, three non-GII.4 viruses, i.e., GII.12, GII.1, and GI.6, caused 528 (13%) of all outbreaks. Several non-GII.4 genotypes (GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) were significantly more associated with food-borne transmission (odds ratio, 1.9 to 7.1; P < 0.05). Patients in LTCF and people >65 years of age were at higher risk for GII.4 infections than those in other settings and with other genotypes (P < 0.05). Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013. In conclusion, our data demonstrate the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks. These surveillance data can be used to improve viral food-borne surveillance and to help guide studies to develop and evaluate targeted prevention methods such as norovirus vaccines, antivirals, and environmental decontamination methods.
Humans keep more than 80 million cats worldwide, ensuring frequent contacts with their viruses. Despite such interactions the enteric virome of cats remains poorly understood. We analyzed a fecal sample from a single healthy cat from Portugal using viral metagenomics and detected five eukaryotic viral genomes. These viruses included a novel picornavirus (proposed genus “Sakobuvirus”) and bocavirus (feline bocavirus 2), a variant of feline astrovirus 2 and sequence fragments of a highly divergent feline rotavirus and picobirnavirus. Feline sakobuvirus A represents the prototype species of a proposed new genus in the Picornaviridae family, distantly related to human salivirus and kobuvirus. Feline astroviruses (mamastrovirus 2) are the closest relatives of the classic human astroviruses (mamastrovirus 1), suggestive of past cross-species transmission. Presence of these viruses by PCR among Portuguese cats was detected in 13% (rotavirus), 7% (astrovirus), 6% (bocavirus), 4% (sakobuvirus), and 4% (picobirnavirus) of 55 feline fecal samples. Co-infections were frequent with 40% (4/10) of cats shedding more than one of these viruses. Our study provides an initial unbiased description of the feline fecal virome indicating a high level of asymptomatic infections. Availability of the genome sequences of these viruses will facilitate future tropism and disease association studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.