In addition, three non-GII.4 viruses, i.e., GII.12, GII.1, and GI.6, caused 528 (13%) of all outbreaks. Several non-GII.4 genotypes (GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) were significantly more associated with food-borne transmission (odds ratio, 1.9 to 7.1; P < 0.05). Patients in LTCF and people >65 years of age were at higher risk for GII.4 infections than those in other settings and with other genotypes (P < 0.05). Phylogeographic analysis identified three major dispersions from two geographic locations that were responsible for the GI.6 outbreaks from 2011 to 2013. In conclusion, our data demonstrate the cyclic emergence of new (non-GII.4) norovirus strains, and several genotypes are more often associated with food-borne outbreaks. These surveillance data can be used to improve viral food-borne surveillance and to help guide studies to develop and evaluate targeted prevention methods such as norovirus vaccines, antivirals, and environmental decontamination methods.
Background
During late summer/fall 2014, pediatric cases of acute flaccid myelitis (AFM) occurred in the United States, coincident with a national outbreak of enterovirus D68 (EV-D68)–associated severe respiratory illness.
Methods
Clinicians and health departments reported standardized clinical, epidemiologic, and radiologic information on AFM cases to the Centers for Disease Control and Prevention (CDC), and submitted biological samples for testing. Cases were ≤21 years old, with acute onset of limb weakness 1 August–31 December 2014 and spinal magnetic resonance imaging (MRI) showing lesions predominantly restricted to gray matter.
Results
From August through December 2014, 120 AFM cases were reported from 34 states. Median age was 7.1 years (interquartile range, 4.8–12.1 years); 59% were male. Most experienced respiratory (81%) or febrile (64%) illness before limb weakness onset. MRI abnormalities were predominantly in the cervical spinal cord (103/118). All but 1 case was hospitalized; none died. Cerebrospinal fluid (CSF) pleocytosis (>5 white blood cells/μL) was common (81%). At CDC, 1 CSF specimen was positive for EV-D68 and Epstein-Barr virus by real-time polymerase chain reaction, although the specimen had >3000 red blood cells/μL. The most common virus detected in upper respiratory tract specimens was EV-D68 (from 20%, and 47% with specimen collected ≤7 days from respiratory illness/fever onset). Continued surveillance in 2015 identified 16 AFM cases reported from 13 states.
Conclusions
Epidemiologic data suggest this AFM cluster was likely associated with the large outbreak of EV-D68–associated respiratory illness, although direct laboratory evidence linking AFM with EV-D68 remains inconclusive. Continued surveillance will help define the incidence, epidemiology, and etiology of AFM.
Noroviruses are the most frequent cause of epidemic acute gastroenteritis in the United States. Between September 2013 and August 2016, 2,715 genotyped norovirus outbreaks were submitted to CaliciNet. GII.4 Sydney viruses caused 58% of the outbreaks during these years. A GII.4 Sydney virus with a novel GII.P16 polymerase emerged in November 2015, causing 60% of all GII.4 outbreaks in the 2015-2016 season. Several genotypes detected were associated with more than one polymerase type, including GI.3, GII.2, GII.3, GII.4 Sydney, GII.13, and GII.17, four of which harbored GII.P16 polymerases. GII.P16 polymerase sequences associated with GII.2 and GII.4 Sydney viruses were nearly identical, suggesting common ancestry. Other common genotypes, each causing 5 to 17% of outbreaks in a season, included GI.3, GI.5, GII.2, GII.3, GII.6, GII.13, and GII.17 Kawasaki 308. Acquisition of alternative RNA polymerases by recombination is an important mechanism for norovirus evolution and a phenomenon that was shown to occur more frequently than previously recognized in the United States. Continued molecular surveillance of noroviruses, including typing of both polymerase and capsid genes, is important for monitoring emerging strains in our continued efforts to reduce the overall burden of norovirus disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.