Modeling of intermolecular forces is a central theme in the physical sciences. The prototypical heterogeneous catalysis system, CO/Pt(111), is an extensively studied example where strong pairwise repulsive forces between the CO molecules have been used to explain the observed structure and dynamics. No direct measurements of these forces were available; yet, they offered a natural way of explaining various macroscopic observations assuming a separable adsorbate-substrate interaction and pairwise adsorbate-adsorbate interactions. In the present study, we measure intermolecular forces by following CO motion on a microscopic scale. The uncorrelated dynamics we observe throughout the coverage range of the measurements excludes the existence of the strong pairwise forces previously suggested. The increase in the rate of uncorrelated motion is explained by a nonlocal modification of the adsorbate-substrate interaction, reflecting a many-body system that cannot be described by the standard separable interaction approach.
The evolution of the crystallographic structure of ZnS films (thickness ≈ 2 μm) grown on Si(100) wafers by the single-source chemical vapor deposition (CVD) of zinc dimethyldithiocarbamate precursor has been examined. X-ray and electron diffraction indicated that the films were cubic (sphalerite) and oriented preferentially along the (111) direction. Transmission electron microscopy (TEM) indicated that the films were composed of a uniformly distributed array of columns approximately 300−500 nm wide. High-resolution TEM at the interface showed that these columns were attached to the substrate surface via smaller columns (∼50−100 nm wide). The density of crystallographic defects in the bulk columns was lower than that in the interfacial columns. Orientation of the crystallites occurred at a much earlier stage in film growth compared to theoretical predictions for evaporative deposited films, suggesting that the presence of impurities during chemical vapor deposition may influence the structural evolution of the film.
Magnesium oxide thin films have been deposited with use of single source chemical vapor deposition (SSCVD). The resultant films were examined by using transmission electron microscopy, X-ray texture analysis, and pole figure analysis. Due to the nature of the chemical reactions occurring at the surface during SSCVD growth, which result in a high growth rate/low flux environment, films of (111) orientation have been achieved without an amorphous underlayer, an unusual result for films of this orientation. Moreover the films have a strong degree of biaxial texturing in the x-y plane as found with X-ray texture analysis. These findings have important implications for buffer layers in perovskite thin film devices. The mechanism producing these structures has been revealed by using TEM and is discussed here.
The interactions of cyanide species with a copper (001) surface were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Adsorbed cyanide species (CN(a)) undergo recombinative desorption evolving molecular cyanogen (C(2)N(2)). As the adsorbed CN species charge upon adsorption, mutually repulsive dipolar interactions lead to a marked desorption energy reduction with increasing CN(a) coverages. Two new TPD analysis approaches were developed, which used only accurately discernible observables and which do not assume constant desorption energies, E(d), and pre-exponential values, ν. These two approaches demonstrated a linear variation of E(d) with instantaneous coverage. The first approach involved an analysis of the variations of desorption peak asymmetry with initial CN coverages. The second quantitative approach utilized only temperatures and intensities of TPD peaks, together with deduced surface coverages at the peak maxima, also as a function of initial surface coverages. Parameters derived from the latter approach were utilized as initial inputs for a comprehensive curve fit analysis technique. Excellent fits for all experimental desorption curves were produced in simulations. The curve fit analysis confirms that the activation energy of desorption of 170-180 kJ/mol at low coverage decreases by up to 14-15 kJ/mol at CN saturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.