The mechanism by which the aminoglycoside antibiotic streptomycin permeabilizes the cytoplasmic membrane of Escherichiu coli cells was reinvestigated. For this purpose, the extent of streptomycin-induced K+ loss from cells growing at low external K+ concentrations was taken as a measure of membrane permeabilization. Experiments with different K+-uptake mutants showed that the antibiotic specifically increased the passive permeability of the cell membrane to K+ and other ions. These permeability changes were small and the membrane potential of the treated cells remained high. The membrane permeabilization was not due to a direct interaction of the antibiotic with the cell membrane, since cells that carry an rpsL mutation and synthesize proteins in a streptomycininsensitive way did not lose K+ after the addition of the antibiotic. Due to misreading and premature termination of translation the cells synthesized aberrant proteins under the conditions where membrane permeabilization occurred. Two conditions are described under which the cells both degraded these mistranslated proteins rapidly and reaccumulated K+, lending support to the hypothesis that membrane permeabilization is due to the presence of the mistranslated proteins in the cell membrane. Evidence is presented that the irreversibility of (dihydro)streptomycin uptake by cells washed free from the antibiotic might also be due to rapid degradation of the mistranslated proteins, leading to 'caging' of the antibiotic inside the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.