Food holds a major role in human beings’ lives and in human societies in general across the planet. The food and agriculture sector is considered to be a major employer at a worldwide level. The large number and heterogeneity of the stakeholders involved from different sectors, such as farmers, distributers, retailers, consumers, etc., renders the agricultural supply chain management as one of the most complex and challenging tasks. It is the same vast complexity of the agriproducts supply chain that limits the development of global and efficient transparency and traceability solutions. The present paper provides an overview of the application of blockchain technologies for enabling traceability in the agri-food domain. Initially, the paper presents definitions, levels of adoption, tools and advantages of traceability, accompanied with a brief overview of the functionality and advantages of blockchain technology. It then conducts an extensive literature review on the integration of blockchain into traceability systems. It proceeds with discussing relevant existing commercial applications, highlighting the relevant challenges and future prospects of the application of blockchain technologies in the agri-food supply chain.
In the last few decades, vehicles are equipped with a plethora of sensors which can provide useful measurements and diagnostics for both the vehicle’s condition as well as the driver’s behaviour. Furthermore, the rapid increase for transportation needs of people and goods together with the evolution of Information and Communication Technologies (ICT) push the transportation domain towards a new more intelligent and efficient era. The reduction of CO2 emissions and the minimization of the environmental footprint is, undeniably, of utmost importance for the protection of the environment. In this light, it is widely acceptable that the driving behaviour is directly associated with the vehicle’s fuel consumption and gas emissions. Thus, given the fact that, nowadays, vehicles are equipped with sensors that can collect a variety of data, such as speed, acceleration, fuel consumption, direction, etc. is more feasible than ever to put forward solutions which aim not only to monitor but also improve the drivers’ behaviour from an environmental point of view. The approach presented in this paper describes a holistic integrated platform which combines well-known machine and deep learning algorithms together with open-source-based tools in order to gather, store, process, analyze and correlate different data flows originating from vehicles. Particularly, data streamed from different vehicles are processed and analyzed with the utilization of clustering techniques in order to classify the driver’s behaviour as eco-friendly or not, followed by a comparative analysis of supervised machine and deep learning algorithms in the given labelled dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.