Highlights d Fecal microbiota development of newborns is dependent on the mode of delivery d The development in cesarean section-born infants deviates from that of vaginally born infants d This deviation can be prevented by fecal microbiota transplantation from the mother d Transplanted cesarean section-born infants show normal fecal microbiota development
Bifidobacteria are common members of the gastro-intestinal microbiota of a broad range of animal hosts. Their successful adaptation to this particular niche is linked to their saccharolytic metabolism, which is supported by a wide range of glycosyl hydrolases. In the current study a large-scale gene-trait matching (GTM) effort was performed to explore glycan degradation capabilities in B. breve. By correlating the presence/absence of genes and associated genomic clusters with growth/no-growth patterns across a dataset of 20 Bifidobacterium breve strains and nearly 80 different potential growth substrates, we not only validated the approach for a number of previously characterized carbohydrate utilization clusters, but we were also able to discover novel genetic clusters linked to the metabolism of salicin and sucrose. Using GTM, genetic associations were also established for antibiotic resistance and exopolysaccharide production, thereby identifying (novel) bifidobacterial antibiotic resistance markers and showing that the GTM approach is applicable to a variety of phenotypes. Overall, the GTM findings clearly expand our knowledge on members of the B. breve species, in particular how their variable genetic features can be linked to specific phenotypes.
PurposeHELMi (Health and Early Life Microbiota) is a longitudinal, prospective general population birth cohort, set up to identify environmental, lifestyle and genetic factors that modify the intestinal microbiota development in the first years of life and their relation to child health and well-being.ParticipantsThe HELMi cohort consists of 1055 healthy term infants born in 2016–2018 mainly at the capital region of Finland and their parents. The intestinal microbiota development of the infants is characterised based on nine, strategically selected, faecal samples and connected to extensive online questionnaire-collected metadata at weekly to monthly intervals focusing on the diet, other exposures and family’s lifestyle as well as the health and growth of the child. Motor and cognitive developmental screening takes place at 18 months. Infant’s DNA sample, mother’s breast milk sample and both parent’s spot faecal samples have been collected.Findings to dateThe mean age of the mothers was 32.8 (SD 4.1) and fathers/coparents 34.8 (5.3) years at the time of enrolment. Seventeen percentage (n=180) of the infants were born by caesarean section. Just under half (49%) were firstborns; 50.7% were males. At 3 months of age, 86% of the babies were exclusively breastfed and 2% exclusively formula-fed.Future plansThe current follow-up from pregnancy to first 24 months will be completed in March 2020, totalling to over 10 000 biological samples and over 50 000 questionnaire entries. The results are expected to identify environmental and host factors that affect early gut microbiota development and health, and hence give indications of how to prevent or reverse microbiota perturbations in infancy. This prospective cohort will be followed up further to identify how the early microbiota relates to later health outcomes, especially weight gain, infections and allergic and other chronic diseases.Trial registration numberNCT03996304; Pre-results.
Background The role of intestinal microbiota in inflammatory bowel diseases is intensively researched. Pediatric studies on the relation between microbiota and treatment response are sparse. We aimed to determine whether absolute abundances of gut microbes characterize the response to infliximab induction in pediatric inflammatory bowel disease. Methods We recruited pediatric patients with inflammatory bowel disease introduced to infliximab at Children’s Hospital, University of Helsinki. Stool samples were collected at 0, 2, and 6 weeks for microbiota and calprotectin analyses. We defined treatment response as fecal calprotectin value <100 µg/g at week 6. Intestinal microbiota were analyzed by 16S ribosomal RNA gene amplicon sequencing using the Illumina MiSeq platform. We analyzed total bacterial counts using quantitative polymerase chain reaction and transformed the relative abundances into absolute abundances based on the total counts. Results At baseline, the intestinal microbiota in the treatment responsive group (n = 10) showed a higher absolute abundance of Bifidobacteriales and a lower absolute abundance of Actinomycetales than nonresponders (n = 19). The level of inflammation according to fecal calprotectin showed no statistically significant association with the absolute abundances of fecal microbiota. The results on relative abundances differed from the absolute abundances. At the genus level, the responders had an increased relative abundance of Anaerosporobacter but a reduced relative abundance of Parasutterella at baseline. Conclusions High absolute abundance of Bifidobacteriales in the gut microbiota of pediatric patients reflects anti-inflammatory characteristics associated with rapid response to therapy. This warrants further studies on whether modification of pretreatment microbiota might improve the outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.