Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
This document describes a method for detecting the onset of eye fatigue and how it could be implemented in an existing live framework. The proposed method, which uses fixation data, does not rely as heavily on the sampling rate of the eye tracker as do methods which use saccade data, making it more suitable for lower cost eye trackers such as mobile and wearable devices. By being able to detect eye fatigue with such eye trackers, it becomes possible to react to the development of fatigue in virtually any environment, such as by alerting drivers that they appear fatigued and may want to pull over. It could also be used to aid in developing interfaces that are more user-friendly by noting at which point a user becomes fatigued while navigating the interface.
This manuscript presents GazeBase, a large-scale longitudinal dataset containing 12,334 monocular eye-movement recordings captured from 322 college-aged subjects. Subjects completed a battery of seven tasks in two contiguous sessions during each round of recording, including a -1) fixation task, 2) horizontal saccade task, 3) random oblique saccade task, 4) reading task, 5/6) free viewing of cinematic video task, and 7) gaze-driven gaming task. A total of nine rounds of recording were conducted over a 37 month period, with subjects in each subsequent round recruited exclusively from the prior round. All data was collected using an EyeLink 1000 eye tracker at a 1,000 Hz sampling rate, with a calibration and validation protocol performed before each task to ensure data quality. Due to its large number of subjects and longitudinal nature, GazeBase is well suited for exploring research hypotheses in eye movement biometrics, along with other emerging applications applying machine learning techniques to eye movement signal analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.