A common aspect of individuality is our subjective preferences in evaluation of reward and effort. The neural circuits that evaluate these commodities influence circuits that control our movements, raising the possibility that vigor differences between individuals may also be a trait of individuality, reflecting a willingness to expend effort. In contrast, classic theories in motor control suggest that vigor differences reflect a speed-accuracy trade-off, predicting that those who move fast are sacrificing accuracy for speed. Here we tested these contrasting hypotheses. We measured motion of the eyes, head, and arm in healthy humans during various elementary movements (saccades, head-free gaze shifts, and reaching). For each person we characterized their vigor, i.e., the speed with which they moved a body part (peak velocity) with respect to the population mean. Some moved with low vigor, while others moved with high vigor. Those with high vigor tended to react sooner to a visual stimulus, moving both their eyes and arm with a shorter reaction time. Arm and head vigor were tightly linked: individuals who moved their head with high vigor also moved their arm with high vigor. However, eye vigor did not correspond strongly with arm or head vigor. In all modalities, vigor had no impact on end-point accuracy, demonstrating that differences in vigor were not due to a speed-accuracy trade-off. Our results suggest that movement vigor may be a trait of individuality, not reflecting a willingness to accept inaccuracy but demonstrating a propensity to expend effort. NEW & NOTEWORTHY A common aspect of individuality is how we evaluate economic variables like reward and effort. This valuation affects not only decision making but also motor control, raising the possibility that vigor may be distinct between individuals but conserved across movements within an individual. Here we report conservation of vigor across elementary skeletal movements, but not eye movements, raising the possibility that the individuality of our movements may be driven by a common neural mechanism of effort evaluation across modalities of skeletal motor control.
Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
This research work proposes an innovative processing scheme for the exploitation of eye movement dynamics on the field of biometrical identification. As the mechanisms that derive eye movements highly depend on each person's idiosyncrasies, cues that reflect at a certain extent individual characteristics may be captured and subsequently deployed for the implementation of a robust identification system. Our methodology involves the employment of a non -parametric statistical test, the multivariate Wald -Wolfowitz test (WWtest), in order to compare the distributions of saccadic velocity and acceleration features, which are extracted while a person fixates on visual stimuli. In the evaluation section we use two publicly available datasets that supply recorded eye movements from a number of subjects during the observation of a moving spot on a computer screen. The resulting identification rates exhibit the efficacy of the suggested scheme to adequately segregate people according to their eye movement traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.