To understand subjective evaluation of an option, various disciplines have quantified the interaction between reward and effort during decision-making, producing an estimate of economic utility, i.e., the subjective 'goodness' of an option. However, variables that affect utility of an option also influence vigor of movements toward that option, i.e., reaction-time plus movementtime. For example, expectation of reward increases speed of saccadic eye movements, whereas expectation of effort decreases this speed. These results imply that vigor may serve as a new, realtime metric with which to quantify subjective utility, and that control of movements may be an implicit reflection of the brain's economic evaluation of the expected outcome.
During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus.
A common aspect of individuality is our subjective preferences in evaluation of reward and effort. The neural circuits that evaluate these commodities influence circuits that control our movements, raising the possibility that vigor differences between individuals may also be a trait of individuality, reflecting a willingness to expend effort. In contrast, classic theories in motor control suggest that vigor differences reflect a speed-accuracy trade-off, predicting that those who move fast are sacrificing accuracy for speed. Here we tested these contrasting hypotheses. We measured motion of the eyes, head, and arm in healthy humans during various elementary movements (saccades, head-free gaze shifts, and reaching). For each person we characterized their vigor, i.e., the speed with which they moved a body part (peak velocity) with respect to the population mean. Some moved with low vigor, while others moved with high vigor. Those with high vigor tended to react sooner to a visual stimulus, moving both their eyes and arm with a shorter reaction time. Arm and head vigor were tightly linked: individuals who moved their head with high vigor also moved their arm with high vigor. However, eye vigor did not correspond strongly with arm or head vigor. In all modalities, vigor had no impact on end-point accuracy, demonstrating that differences in vigor were not due to a speed-accuracy trade-off. Our results suggest that movement vigor may be a trait of individuality, not reflecting a willingness to accept inaccuracy but demonstrating a propensity to expend effort. NEW & NOTEWORTHY A common aspect of individuality is how we evaluate economic variables like reward and effort. This valuation affects not only decision making but also motor control, raising the possibility that vigor may be distinct between individuals but conserved across movements within an individual. Here we report conservation of vigor across elementary skeletal movements, but not eye movements, raising the possibility that the individuality of our movements may be driven by a common neural mechanism of effort evaluation across modalities of skeletal motor control.
Suppose that the purpose of a movement is to place the body in a more rewarding state. In this framework, slower movements may increase accuracy and therefore improve probability of acquiring reward, but the longer durations of slow movements produce devaluation of reward. Here we hypothesize that the brain decides the vigor of a movement (duration and velocity) based on the expected discounted reward associated with that movement. We begin by showing that durations of saccades of varying amplitude can be accurately predicted by a model in which motor commands maximize expected discounted reward. This result suggests that reward is temporally discounted even in timescales of tens of milliseconds. One interpretation of temporal discounting is that the true objective of the brain is to maximize the rate of reward – which is equivalent to a specific form of hyperbolic discounting. A consequence of this idea is that the vigor of saccades should change as one alters the inter-trial intervals between movements. We find experimentally that in healthy humans, as inter-trial intervals are varied, saccade peak velocities and durations change on a trial-by-trial basis precisely as predicted by a model in which the objective is to maximize the rate of reward. Our results are inconsistent with theories in which reward is discounted exponentially. We suggest that there exists a single cost, rate of reward, which provides a unifying principle that may govern control of movements in timescales of milliseconds, as well as decision making in timescales of seconds to years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.