Reversible computation deals with mechanisms for undoing the effects of actions executed by a dynamic system. This paper is concerned with reversibility in the context of Petri nets which are a general formal model of concurrent systems. A key construction we investigate amounts to adding 'reverse' versions of selected net transitions. Such a static modification can severely impact on the behaviour of the system, e.g., the problem of establishing whether the modified net has the same states as the original one is undecidable. We therefore concentrate on nets with finite state spaces and show, in particular, that every transition in such nets can be reversed using a suitable finite set of new transitions.
Recent studies investigated the problems of analysing Petri nets and synthesising them from labelled transition systems (LTS) with two labels (transitions) only. In this paper, we extend these works by providing new conditions for the synthesis of Weighted Marked Graphs (WMGs), a well-known and useful class of weighted Petri nets in which each place has at most one input and one output. Some of these new conditions do not restrict the number of labels; the other ones consider up to 3 labels. Additional constraints are investigated: when the LTS is either finite or infinite, and either cyclic or acyclic. We show that one of these conditions, developed for 3 labels, does not extend to 4 nor to 5 labels. Also, we tackle geometrically the WMG-solvability of finite, acyclic LTS with any number of labels.
When a Petri net system of some class is synthesised from a labelled transition system, it may be interesting to derive structural properties of the corresponding reachability graphs and to use them in a pre-synthesis phase in order to quickly reject inadequate transition systems, and provide fruitful error messages. The same is true for simultaneous syntheses problems. This was exploited for the synthesis of choicefree nets for instance, for which several interesting properties have been derived. We exhibit here a new property for this class, and analyse if this gets us closer to a full characterisation of choice-free synthesizable transition systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.