Abstract. Observations of aerosol and trace gases in the remote troposphere are vital to quantify background concentrations and identify long-term trends in atmospheric composition on large spatial scales. Measurements made at high altitude are often used to study free-tropospheric air; however such high-altitude sites can be influenced by boundary layer air masses. Thus, accurate information on air mass origin and transport pathways to high-altitude sites is required. Here we present a new method, based on the source–receptor relationship (SRR) obtained from backwards WRF-FLEXPART simulations and a k-means clustering approach, to identify source regions of air masses arriving at measurement sites. Our method is tailored to areas of complex terrain and to stations influenced by both local and long-range sources. We have applied this method to the Chacaltaya (CHC) GAW station (5240 m a.s.l.; 16.35∘ S, 68.13∘ W) for the 6-month duration of the “Southern Hemisphere high-altitude experiment on particle nucleation and growth” (SALTENA) to identify where sampled air masses originate and to quantify the influence of the surface and the free troposphere. A key aspect of our method is that it is probabilistic, and for each observation time, more than one air mass (cluster) can influence the station, and the percentage influence of each air mass can be quantified. This is in contrast to binary methods, which label each observation time as influenced by either boundary layer or free-troposphere air masses. Air sampled at CHC is a mix of different provenance. We find that on average 9 % of the air, at any given observation time, has been in contact with the surface within 4 d prior to arriving at CHC. Furthermore, 24 % of the air has been located within the first 1.5 km above ground level (surface included). Consequently, 76 % of the air sampled at CHC originates from the free troposphere. However, pure free-tropospheric influences are rare, and often samples are concurrently influenced by both boundary layer and free-tropospheric air masses. A clear diurnal cycle is present, with very few air masses that have been in contact with the surface being detected at night. The 6-month analysis also shows that the most dominant air mass (cluster) originates in the Amazon and is responsible for 29 % of the sampled air. Furthermore, short-range clusters (origins within 100 km of CHC) have high temporal frequency modulated by local meteorology driven by the diurnal cycle, whereas the mid- and long-range clusters' (>200 km) variability occurs on timescales governed by synoptic-scale dynamics. To verify the reliability of our method, in situ sulfate observations from CHC are combined with the SRR clusters to correctly identify the (pre-known) source of the sulfate: the Sabancaya volcano located 400 km north-west from the station.
Abstract. Over the years, the problem of dissipation rate of turbulent kinetic energy (TKE) in stable stratification remained unclear because of the practical impossibility to directly measure the process of dissipation that takes place at the smallest scales of turbulent motion. Poor representation of dissipation causes intolerable uncertainties in turbulence-closure theory and thus in modelling stably stratified turbulent flows. We obtain a theoretical solution to this problem for the whole range of stratifications from neutral to limiting stable; and validate it via (i) direct numerical simulation (DNS) immediately detecting the dissipation rate and (ii) indirect estimates of dissipation rate retrieved via the TKE budget equation from atmospheric measurements of other components of the TKE budget. The proposed formulation of dissipation rate will be of use in any turbulence-closure models employing the TKE budget equation and in problems requiring precise knowledge of the high-frequency part of turbulence spectra in atmospheric chemistry, aerosol science, and microphysics of clouds.
This paper presents a review of concepts related to wildfire risk assessment, including the determination of fire ignition and propagation (fire danger), the extent to which fire may spatially overlap with valued assets (exposure), and the potential losses and resilience to those losses (vulnerability). This is followed by a brief discussion of how these concepts can be integrated and connected to mitigation and adaptation efforts. We then review operational fire risk systems in place in various parts of the world. Finally, we propose an integrated fire risk system being developed under the FirEUrisk European project, as an example of how the different risk components (including danger, exposure and vulnerability) can be generated and combined into synthetic risk indices to provide a more comprehensive wildfire risk assessment, but also to consider where and on what variables reduction efforts should be stressed and to envisage policies to be better adapted to future fire regimes. Climate and socio-economic changes entail that wildfires are becoming even more a critical environmental hazard; extreme fires are observed in many areas of the world that regularly experience fire, yet fire activity is also increasing in areas where wildfires were previously rare. To mitigate the negative impacts of fire, those responsible for managing risk must leverage the information available through the risk assessment process, along with an improved understanding on how the various components of risk can be targeted to improve and optimize the many strategies for mitigation and adaptation to an increasing fire risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.