This study presents the results of experimental work on the production and examination of samples of laminated polymetallic products made by wire-feed electron-beam additive technology using the technique of controlled filament feeding into the melt bath. The structure of the products based on M1 copper and AMg5 aluminum alloy combines metallic and intermetallic layers with the presence of a gradient transition between the phases. Inside the layers with a transition structure the distribution of intermetallic phases can be of different types. The microhardness values of the different structural constituents of the samples differ by more than a factor of 16. The mechanical properties of the material of the transition layers are characterized by low strength and low plasticity. In the structure of the intermetallic layers and at the boundary between them the formation of defects in the form of cracks and delaminations is observed.
Friction stir processing of additive workpieces in the sample growth direction (the vertical direction) and the layer deposition direction (the horizontal one) was carried out. The hardening regularities of aluminum-silicon alloy A04130 and aluminum-magnesium alloy AA5056 manufactured by electron beam additive technology were studied. For each material, 1 to 4 subsequent tool passes were performed in both cases. It was found that the formation of the stir zone macro-structure does not significantly change with the processing direction relative to the layer deposition direction in additive manufacturing. The average grain size in the stir zone after the fourth pass for AA5056 alloy in the horizontal direction was 2.5 ± 0.8 μm, for the vertical one, 1.6 ± 0.5 μm. While for the alloy A04130, the grain size was 2.6 ± 1.0 μm and 1.8 ± 0.7 for the horizontal and vertical directions, respectively. The fine-grained metal of the stir zone for each alloy in different directions had higher microhardness values than the base metal. The tensile strength of the processed metal was significantly higher than that of the additively manufactured material of the corresponding alloy. The number of tool passes along the processing line is different for the two selected alloys. The second, third and fourth passes have the most significant effect on the mechanical properties of the aluminum-magnesium alloy.
This paper is devoted to using multi-pass friction stir processing (FSP) for admixing 1.5 to 30 vol.% copper powders into an AA5056 matrix for the in situ fabrication of a composite alloy reinforced by Al-Cu intermetallic compounds (IMC). Macrostructurally inhomogeneous stir zones have been obtained after the first FSP passes, the homogeneity of which was improved with the following FSP passes. As a result of stirring the plasticized AA5056, the initial copper particle agglomerates were compacted into large copper particles, which were then simultaneously saturated by aluminum. Microstructural investigations showed that various phases such as α-Al(Cu), α-Cu(Al) solid solutions, Cu3Al and CuAl IMCs, as well as both S and S’-Al2CuMg precipitates have been detected in the AA5056/Cu stir zone, depending upon the concentration of copper and the number of FSP passes. The number of IMCs increased with the number of FSP passes, enhancing microhardness by 50–55%. The effect of multipass FSP on tensile strength, yield stress and strain-to-fracture was analyzed.
In this study, samples of Al-Mg-Sc alloy were investigated after friction stir processing with the addition of Mo powder. Holes were drilled into 5 mm-thick aluminum alloy sheets into which Mo powder was added at percentages of 5, 10, and 15 wt%. The workpieces with different powder contents were then subjected to four passes of friction stir processing. Studies have shown that at least three tool passes are necessary and sufficient for a uniform Mo powder distribution in the stir zone, but the number of required passes is higher with an increase in the Mo content. Due to the temperature specifics of the processing, no intermetallic compounds are formed in the stir zone, and Mo is distributed as separate particles of different sizes. The average ultimate strength of the composite materials after four passes is approximately 387 MPa in the stir zone, and the relative elongation of the material changes from 15 to 24%. The dry sliding friction test showed that the friction coefficient of the material decreases with the addition of 5 wt% Mo, but with a further increase in Mo content, returns to the original material values.
Structural studies and mechanical tests of additively manufactured samples from AISI 321 steel copper C110000 have been carried out. Mechanical tensile tests of 321 steel show slight differences in the ultimate tensile strength (up to 3-4%) and ductility (up to 10%) of test coupons tested along the material growth direction and along the layer deposition direction. The strength of C11000 copper samples is 9.4% higher in the layer deposition direction, but their ductility is 15.4% lower than that of samples deformed in the growth direction. The strain relief on the surface of the polished gage section of the steel test coupons demonstrates changes in the material structure with small elongated grains along the growth direction of the sample. The deformation relief of copper samples is mainly related to the deformation of large columnar grains stretched in the growth direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.