Friction stir welding (FSW) on a heavy gauge sheet of a hereditary fine-grained Al-Mg-Sc-Zr alloy was carried out to study the specifics of plasticized metal flow and microstructural evolution in different sections and zones of the joint. It was found that the stir zone (SZ) macrostructure may contain either a single or many nugget zones depending on the metal sheet thickness and the seam length. The effect of grain kinking in a thermomechanically affected zone (TMAZ) under pressure from the stir zone metal was discovered. The stir zone metal was fine-grained but had a microhardness lower than that of the base metal, which may be explained by the overaging effect of FSW on the Al3Sc precipitates. The tensile strength of the joint was almost equal to that of the base metal (BM). The grain size distributions were obtained in different sections below the sheet surface and away from the exit hole, which allowed us to suggest the specific adhesion-assisted layer-by layer metal transfer mechanism in FSW.
The majority of literature sources dedicated to dissimilar Al-Cu friction stir welding testifies to the formation of intermetallic compounds (IMC) according to diffusion-controlled reactions, i.e., without liquation on the Al/Cu interfaces. Fewer sources report on revealing Al-Cu eutectics, i.e., that IMCs are formed with the presence of the liquid phase. This work is an attempt to fill the gap in the results and find out the reasons behind such a difference. Structural-phase characteristics of an in-situ friction stir processed (FSP) Al-Cu zone were studied. The single-pass FSPed stir zone (SZ) was characterized by the presence of IMCs such as Al2Cu, Al2Cu3, AlCu3, Al2MgCu, whose distribution in the SZ was extremely inhomogeneous. The advancing side SZ contained large IMC particles as well as Al(Mg,Cu) solid solution (SS) dendrites and Al-Al2Cu eutectics. The retreating side SZ was composed of Al-Cu solid solution layered structures and smaller IMCs. Such a difference may be explained by different levels of heat input with respect to the SZ sides as well as by using lap FSP instead of the butt one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.