Highlights d Endothelial loss of pfkfb3 impairs ischemic muscle revascularization and regeneration d EC-derived lactate instructs MCT1-dependent macrophage functional polarization d Lactate-polarized macrophages promote muscle revascularization and regeneration d Restoring lactate levels improves macrophage polarization and recovery from ischemia
Exercise tolerance is impaired in hypoxia, and it has recently been shown that dietary nitrate supplementation can reduce the oxygen (O(2)) cost of muscle contractions. Therefore, we investigated the effect of dietary nitrate supplementation on arterial, muscle, and cerebral oxygenation status, symptoms of acute mountain sickness (AMS), and exercise tolerance at simulated 5,000 m altitude. Fifteen young, healthy volunteers participated in three experimental sessions according to a crossover study design. From 6 days prior to each session, subjects received either beetroot (BR) juice delivering 0.07 mmol nitrate/kg body wt/day or a control drink (CON). One session was in normoxia with CON (NOR(CON)); the two other sessions were in hypoxia (11% O(2)), with either CON (HYP(CON)) or BR (HYP(BR)). Subjects first cycled for 20 min at 45% of peak O(2) consumption (VO(2)peak; EX(45%)) and thereafter, performed a maximal incremental exercise test (EX(max)). Whole-body VO(2), arterial O(2) saturation (%SpO(2)) via pulsoximetry, and tissue oxygenation index of both muscle (TOI(M)) and cerebral (TOI(C)) tissue by near-infrared spectroscopy were measured. Hypoxia per se substantially reduced VO(2)peak, %SpO(2), TOI(M), and TOI(C) (NOR(CON) vs. HYP(CON), P < 0.05). Compared with HYP(CON), VO(2) at rest and during EX(45%) was lower in HYP(BR) (P < 0.05), whereas %SpO(2) was higher (P < 0.05). TOI(M) was ~4-5% higher in HYP(BR) than in HYP(CON) both at rest and during EX(45%) and EX(max) (P < 0.05). TOI(C) as well as the incidence of AMS symptoms were similar between HYP(CON) and HYP(BR) at any time. Hypoxia reduced time to exhaustion in EX(max) by 36% (P < 0.05), but this ergolytic effect was partly negated by BR (+5%, P < 0.05). Short-term dietary nitrate supplementation improves arterial and muscle oxygenation status but not cerebral oxygenation status during exercise in severe hypoxia. This is associated with improved exercise tolerance against the background of a similar incidence of AMS.
Hypoxia-induced muscle wasting is a phenomenon often described with prolonged stays at high altitude, which has been attributed to altered protein metabolism. We hypothesized that acute normobaric hypoxia would induce a negative net protein balance by repressing anabolic and activating proteolytic signaling pathways at rest and postexercise and that those changes could be partially genetically determined. Eleven monozygotic twins participated in an experimental trial in normoxia and hypoxia (10.7% O2). Muscle biopsy samples were obtained before and after a 20-min moderate cycling exercise. In hypoxia at rest, autophagic flux was increased, as indicated by an increased microtubule-associated protein 1 light chain 3 type II/I (LC3-II/I) ratio (+25%) and LC3-II expression (+60%) and decreased p62/SQSTM1 expression (-25%; P<0.05), whereas exercise reversed those changes to a level similar to that with normoxia except for p62/SQSTM1, which was further decreased (P<0.05). Hypoxia also increased Bnip3 (+34%) and MAFbx (+18%) mRNA levels as well as REDD1 expression (+439%) and AMP-activated protein kinase phosphorylation (+22%; P<0.05). Among the molecular responses to hypoxia and/or exercise, high monozygotic similarity was found for REDD1, LC3-II, and LC3-II/I (P<0.05). Our results indicate that environmental hypoxia modulates protein metabolism at rest and after moderate exercise by primarily increasing markers of protein breakdown and, more specifically, markers of the autophagy-lysosomal system, with a modest genetic contribution.
Summary Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4 + mECs are enriched in red oxidative muscle areas while ATF3/4 low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4 + mECs are more angiogenic when compared with white ATF3/4 low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4 + ) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.
Background: Satellite cells (SCs) are required for muscle repair following injury and are involved in muscle remodeling upon muscular contractions. Exercise stimulates SC accumulation and myonuclear accretion. To what extent exercise training at different mechanical loads drive SC contribution to myonuclei however is unknown. Results: By performing SC fate tracing experiments, we show that 8 weeks of voluntary wheel running increased SC contribution to myofibers in mouse plantar flexor muscles in a load-dependent, but fiber type-independent manner. Increased SC fusion however was not exclusively linked to muscle hypertrophy as wheel running without external load substantially increased SC fusion in the absence of fiber hypertrophy. Due to nuclear propagation, nuclear fluorescent fate tracing mouse models were inadequate to quantify SC contribution to myonuclei. Ultimately, by performing fate tracing at the DNA level, we show that SC contribution mirrors myonuclear accretion during exercise. Conclusions: Collectively, mechanical load during exercise independently promotes SC contribution to existing myofibers. Also, due to propagation of nuclear fluorescent reporter proteins, our data warrant caution for the use of existing reporter mouse models for the quantitative evaluation of satellite cell contribution to myonuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.