<span>Due to natural randomness, partial shading conditions (PSCs) to photovoltaic (PV) power generation significantly drop the power generation. Metaheuristic based maximum power point tracking (MPPT) can handle PSCs by searching PV panels’ global maximum power point (GMPP). However, trapped at local maxima, sluggishness, continuous power oscillations around GMPP and inaccuracy are the main disadvantages of metaheuristic algorithm. Therefore, the development of algorithm under complex PSCs has been continuously attracting many researchers to yield more satisfying results. In this paper, several algorithms including conventional and metaheuristic are selected for candidate, such as perturb and observe (P&O), firefly (FF), differential evolution (DE), grey wolf optimizer (GWO) and Seagull optimizer (SO). From the preliminary study, SO has shown best performance among other candidates. Then, SO is improved for rapid global optimizer. Modified variable step sizes perturb and observe (MVSPO) is applied to enhance the accuracy tracking of SO. To evaluate the performances, high complexity multipeak partial shading is used to test the algorithms. Statistical results are also provided to analyze the trend of performances. The proposed method performances are shown better fast-tracking time and settling time, high accuracy, higher energy harvesting and low steady-state oscillations than other candidates.</span>
<span>A new maximum power point tracking (MPPT) technique based on the bio-inspired metaheuristic algorithm for photovoltaic system (PV system) is proposed, namely tunicate swarm algorithm-based MPPT (TSA-MPPT). The proposed algorithm is implemented on the PV system with five PV modules arranged in series and integrated with DC-DC buck converter. Then, the PV system is tested in a simulation using PowerSim (PSIM) software. TSA-MPPT is tested under varying irradiation conditions both uniform irradiation and non-uniform irradiation. Furthermore, to evaluate the performance, TSA-MPPT is compared with perturb & observe-based MPPT (P&O-MPPT) and particle swarm optimization-based MPPT (PSO-MPPT). The TSA-MPPT has an accuracy of 99% and has a reasonably practical capability compared to the MPPT technique, which already existed before.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.